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Abstract. Table retrieval aims to rank candidate tables for answering
natural language query, in which the most critical problem is how to
learn informative representations for structured tables. Most previous
methods roughly flatten the table and send it into a sequence encoder,
ignoring the structure information of tables and the semantic interaction
between table cells and contexts. In this paper, we propose a dual graph
based method to perceive the semantics and structure of tables, so as
to preferably support the downstream table retrieval task. Inspired by
human cognition, we first decouple a table into the row view and column
view, then build dual graphs from these two views with the consideration
of table contexts. Afterward, intra-graph and inter-graph interactions
are iteratively performed for aggregating and exchanging local row- and
column-oriented features respectively, and an adaptive fusion strategy
is eventually tailor-made for sophisticated table representations. In this
way, the table structure and semantic information are well considered
with dual-graph modeling. Consequently, the input query can match the
target tables based on their full-fledged table representations and achieve
the ultimate ranking results more accurately. Extensive experiments ver-
ify the superiority of our dual graphs over strong baselines on two table
retrieval datasets WikiTables and WebQueryTable. Further analyses also
confirm the adaptability for row-/column-oriented tables, and show the
rationality and generalization of dual graphs. The source code is available
at https://github.com/ty33123/DualG.

Keywords: table understanding - table retrieval - graph
representation learning

1 Introduction

Table retrieval is an important task in information retrieval, which aims to rank
the candidate tables extracted from the web given a natural language query. Due
to valuable semi-structured information in these tabular data, table retrieval has
been used in various research tasks such as knowledge graph construction [12,22],

question answering [3,11], and fact verification [2,15].
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Fig. 1. Tabular graph construction for the table along with its context (e.g., caption),
comprising Row Graph and Column Graph in our method.

Previous table retrieval methods typically treat a table as plain text by flat-
tening the table with its contexts (e.g., page title, table caption) into a long
sequence [4,13,18,19,24], in which the most direct way is arranging these table
cells from left to right and from top to bottom. However, unlike natural lan-
guage processing, flattened tables are still not strictly grammatical and cannot
act as native text sequences, and an ideal table understanding model requires
the ability of semantic comprehension and structure awareness. Taking the table
in Fig. 1 as a concrete example, table cells appearing in the same column or row
tend to have similar surface form and some semantic relevance, which are difficult
to perceive and capture with these flat-based methods, resulting in sub-optimal
performances.

Naturally, tables have a two-dimensional structure, that is, rows and columns
organize the table horizontally and vertically. Therefore, there are two orthogo-
nal ways to deliver the association among data cells and need to be accurately
understood for downstream tasks like table retrieval. As shown in Fig. 1, data
cells “$4392” and “$1098(0 share the identical fee type since they appear in the
same row “Food and Housing’, so that establishing the connections between cells
and their corresponding row headers is capable of boosting the table representa-
tion. Similarly, this phenomenon also exists in columns. Moreover, table context
(e.g., page title, table caption) is another information source closely related to
the table topic and helps assist table understanding. From the above observa-
tions, we believe that the table should be understood from row and column,
respectively, with the consideration of table contexts.

To this end, we propose a Dual-Graph (DualG) based table representation
model for precise table retrieval. Specifically, DualG imitates human cognition
and constructs row graph and column graph from horizontal and vertical per-
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spectives, respectively. Meanwhile, table context is also specified as special nodes
integrated into these graphs. Next, dual-graph representation learning is devised
for the row and column graphs to obtain a full-fledged table representation, where
the intra-graph interaction mechanism is conducted to aggregate the local row-
and column-oriented information in each graph. Beside, we also propose inter-
graph interaction to enable the exchange of heterogeneous messages between two
graphs for the recombination of rows and columns, which avoids the risk of infor-
mation loss in single row or column graph and facilitates the concise interaction
of two views. Finally, an adaptive fusion module is introduced to dynamically
fuse the unique information from row and column perspectives for achieving the
holistic table representation.

In this way, the informative table representation can be involved into the final
retrieval prediction procedure. Specifically, natural language query is matched
with both the table representation encoded by dual-graph learning and the
semantic-rich table contextual representation, and then the matching features
are fed into the ultimate regression network to gain the relevance score between
the query and candidate table. As the table is modeled into dual graphs, the
row- and column-oriented structures can be delicately captured for enhancing
table retrieval. We construct broad experiments on the WikiTables and Web-
QueryTable datasets to evaluate our DualG. Experimental results confirm our
consistent improvements in comparison with previous state-of-the-art methods.
Extensive analyses show that DualG can adaptively fuse the row- and column-
aware structures, and a cross-dataset evaluation reveals the better generality.

2 Related Work

Flat table-based methods have always been a popular paradigm in the table
retrieval field, which flatten the table into a text sequence for representa-
tion. Some early approaches are following unsupervised BM25 [14] or feature-
based [16,18,26] table retrieval procedure. Researchers have recently explored
ways to use BERT [6] for table retrieval. TaBERT [24] jointly learns repre-
sentations for natural language sentences and structured tables by the content
snapshot. BERT4TR [4] combines BERT and table features for joint training.
Due to the length limit for BERT, only the most relevant components (rows,
columns, cells) are encoded. StruBERT [19] encodes the row or column sequence
of a table using horizontal and vertical self-attention. However, these flat table
modeling methods cannot fully mine and explore the table structural informa-
tion, which is essential for table understanding. In other ways, MTR, [17] uses a
gated multimodal unit (GMU) to learn a joint representation of the query and
the different table modalities, and the final table-query relevance is estimated
based on the query and unimodal representation.

The development of graph representation learning has brought state-of-the-
art research results in many fields. There are also some researchers try to adapt
these techniques into table retrieval. MGNETS [5] builds the graph based on the
whole corpus, where each unique data cell, context term, and table in the corpus
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Fig. 2. Overview of DualG, we obtain the relevance score (s) by query-context match-
ing and query-graph matching, where H is achieved by Dual-Graph representation
learning and X is the initial representation of query. The horizontal purple arrows
represent information propagation within the graph (Sect.3.3), and the vertical green
arrows represent an exchange of heterogeneous information between the row graph and
column graph (Sect. 3.3).

serve as nodes, and edges represent the membership and co-occurrence relation-
ship. GTR [23] converts the table into a single tabular graph with data cell,
virtual row, and column nodes to capture the layout structures. Although the
above graph-based algorithms can obtain the intrinsic table structure, they still
face the challenges of information fuzziness and entanglement. Because rows and
columns may represent different semantic relations in different tables, modeling
the global natural layout into a single graph neglects the local row and column
properties. In addition, table contexts also have strong indicative effects on table
gist and offer vital guidance for table understanding, which prior methods often
ignore for modeling the table. Different from the above attempts, we follow the
design specification of tables and the expression mechanism of information, pro-
pose first to decouple a table into row view and column view and build dual graph
with its instructive contexts, and then couple two graphs for the holistic table
representation.

3 Methodology

In this section, we first introduce the studied problem (Sect.3.1) and then
describe our proposed framework DualG for table retrieval.

Overview. Figure?2 illustrates the architecture of DualG. In our framework,
table retrieval is composed of tabular graph construction (Sect.3.2), tabular
graph representation learning (Sect. 3.3), and relevance prediction (Sect. 3.4). In
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particular, we consider the table cells and its contexts to build the tabular graphs
from row and column views in tabular graph construction. As for tabular graph
learning, a systematic dual-graph learning method is proposed to capture the
holistic table representation, which contains intra-graph interaction, inter-graph
interaction, and adaptive fusion. In prediction module, the relevance score can be
obtained by matching the natural language query with the table representation
and table contextual features.

3.1 Task Definition

In table retrieval task, given a query ¢ € (@, the candidate table set 7 =
{T1,...,T,} is sorted by the relevance to ¢ in descending order, where T;
(1 =1,..,p) is the i-th table in the table set. The table T; consists of m rows and
n columns, and several surrounding text (e.g., table caption). The core problem
of table retrieval is the calculation of the correlation between ¢ and T;.

3.2 Graph Construction

In this subsection, to effectively depict the structured information for the table,
we describe how to construct dual graphs: the row graph G, = {(V,&,)} and the
column graph G. = {(V,&.)}. From human perception, G, and G. should have
the same nodes but different edges. So, they are both composed of cell nodes
V. and context nodes Vi, i.e., V = {V.,V;}. Each data cell in i-th row and j-th
column of table is regarded as a node v%7 € V. in the graph. For the merged data
cell, we restore the original layout and fill in the same data as the merged cell. As
table context (e.g., web page title, table caption) has rich semantic knowledge
which is highly relevant to the table topic and helps assist table understanding,
we view each context information as a graph node vf € V;.

Considering that the first node of a row/column is usually the table header
which describes the main content of row/column, It is intuitive to establish the
connection between each table cell node and header node in a differentiated way.
Herein, when building distinct tabular graphs with row and column structures,
we construct two kinds of undirected edges (cell-context edge and cell-cell edge).
The specific edges of row and column graphs are as follows

Row Graph. As for the edges &, in row graph, we connect each data cell node
v (i €{0,...,m},j € {0,...,n}) in the table with the row header node v%° and
the context node vy, that is (vi7,vi0) € &, and (vi7,vF) € &, which enables
the graph to aggregate information by rows.

Column Graph. When connecting &£., we build the relation between each cell
node v%7 (i € {0,....,m},j € {0,...,n}) and the column header node v/, the
context node vF, respectively. That is (v%7,v27) € £, and (v¥7,vF) € &.. In this
graph, the message can be passed by columns.
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Figure 1 shows an example of a constructed tabular graph from the table
which caption is Cost of Attendance. In a tabular graph, the caption as context
node connects to all cell nodes, and the first cell of a row/column connects to
each cell node of this row/column. To this end, correlation among different rows
can be captured by the intermediate context (e.g., table caption) node in our
DualG, which is modelled in a column graph. The correlation among different
columns can also be captured in row graph by the similar way.

3.3 Dual-Graph Representation Learning

As shown in Fig. 2, representation learning for dual graphs (row and column
graph) contains three parts: intra-graph interaction, inter-graph interaction and
adaptive fusion module, where node information is aggregated within a graph and
exchanged between dual graphs. In this way, row- and column-based structures
can be finely captured respectively and then fused adaptively for holistic dual-
graph representations.

Intra-Graph Interaction. Graph convolutional network [9] is a typical graph
neural network model that contains a stack of convolutional layers and is
employed for different representation learning tasks. To better learn the table
representation, we perform it on row and column graphs to learn latent node
embeddings, respectively, and learn the representation of each node by aggre-
gating information from its neighbours within a graph. Therefore, intra-graph
interactions can be used to understand different cell contents through tabular

structures:
HH+D = o (ﬁ—%AD—%HU)W(l)) (1)

where A = A + I is the adjacency matrix A of the graph G, (G.) with added
self-connections, I is the identity matrix, D is the diagonal node degree matrix
with D(i,1) = > A(i,7), W is the I-th layer trainable weight matrix, o is a
non-linear activation function, H(®) is initialized with pretrained word vectors
according to each node content. Thus, [-th layer hidden representations in G,
and G. can be notated as H7(~l) and Hgl) respectively.

Inter-Graph Interaction. To enable heterogeneous information (row- and
column-based structures) from different graphs to be gradually fused into an
accordant one, we introduce inter-graph interaction to exchange information
between dual graphs, which first apply a linear transformation and layer nor-
malization [20] to node representation following I-th layer in GCN:

Hg) = LayerNorm(HSﬁl)Wg) + bg)), (2)
Hgl) = LayerNorm(Hgl)ng) + bg))a (3)
H = MLP([HY [HY), )
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where Wg), bsal), ng) and bgl) are trainable parameters. After that, the nor-
malized node representations Hg) and Hgl) learned from the row graph G, and
column graph G, are concatenated, which then goes through an MLP layer to
combine the heterogeneous information and obtain the final [-th layer hidden

features H) in dual-graph representation learning, i.e., Hg) = Hg) =HO,

Adaptive Fusion. A perfect fusion strategy should eliminate redundant data
after combining heterogeneous information. So, we introduce a particular fusion
module in the last layer of DualG for full-fledged table representation. Con-
cretely, the fusion strategy to adaptive fuse row- and column-based unique fea-
tures and the dynamic weights are computed as follows:

a = sigmoid(HEH W) 4 p(L), (5)
B = sigmoid(HPW L) 1 p(B))y, (6)

where H,(nL) and HEL) are row-aware and column-aware node representations
after the L-th (last) layer of GCN, which do not conduct the inter-graph inter-
action but direct access to fusion module. Due to the complexity and diversity of
tables, we design these vector o, 3 € RIVI*! represent the each cell row /column
weight, where HSL) and HgL) are calculated with Eq.1 in row graph G, and
column graph G, respectively at the last layer of GCN. a and 3 represent the
adaptive fusion weights of G, and G, respectively. To enable a + 3 = 1, we
normalize o and 3 is:

a=a/(a+p), (7)
B=1-a. (8)

Then, we can get the final full-fledged table representation H(*) based on the
calculated importance a and 3 for dual graphs:

H") = aHY + gHL) (9)

Inspired by Attention [20], we use the multi-head dual-graph representation
method, which allows the model jointly learn relevant information from different
representation subspaces. For table representation H;LL) in head h, we can obtain
it with Eq.1-9. And then we stack the initialized table representation and the
multi-head table representations H,,; = [H(®, HgL), ey HglL), o H%J)], and per-
form mean pooling to get the final table representation H whose dimension is

consistent with H;lL) .

3.4 Prediction

Based on the table representation, we conduct the prediction process in three
steps: query graph matching to understand the table structure and obtain query-
related features, query context matching to compute the semantic similarity
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between the query and table context, and the final matching optimization to
combine above results for the final metric.

Query Graph Matching. Given the table representation obtained by Section
3.3 and query representation encoded by the pre-trained word vectors which also
encode the graph node content, we first apply the linear transformation and layer
normalization similar to Eq. 2 to these representations, which maps the table and
query representations into the same space for subsequent matching operations.
In order to implement query-relevant table features h,,. We designed a query-
aware attention mechanism:

h,, = Attention(q, K, V)
— softmax(qK ' /v/dy) -V

where q = XW,, K = HWg, V = HWy. X and H are normalized query,
table representations, respectively.

(10)

Query Context Matching. The table contextual information (e.g., page title
and table caption) has valuable semantic knowledge and can provide indicative
information for the table data. Therefore, we perform the query context match-
ing to further improve the retrieval. The sentence pairs task in the pre-trained
language model (PLM) is a clever interactive semantic similarity computation
model. So we concatenate the query with all contexts (X, = [CLS] query [SEP]
contexts [SEP]) and input them into a pre-trained language model (e.g., BERT)
to extract semantic similarity features:

th = PLM(XQC) (11)

Training and Inference

Training. After matching the query with tabular graph and table context,
respectively. We concatenate the query-related table features h,. and seman-
tic similarity features hgy, and feed them into a multi-layer perceptron (MLP)
to calculate the relevance score:

s = MLP([hgc[|hgg]) (12)

Following BERT4TR [4], we treat the problem as a regression task and
approximate point-wise ranking with a mean square error (MSE) loss as:

Lyse = Y (yi — i) (13)

where y; is the gold relevance score of table ¢ and s; is the predicted score by
Eq. 12.

Otherwise, when the query has only one relevant table, we minimize the
cross-entropy loss as training objective, following [23]:

Log = =), [yilog(si) + (1—y:) log(1—s:)] (14)
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Inference. Given a query ¢, each candidate table T; is constructed as dual tabular
graphs for the table representation which is then passed into query-graph match-
ing process, and then combined with query-context matching for an estimation
of relevance score s;.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed approach, we conducted exten-
sive experiments on two datasets for table retrieval: WikiTables [26] and Web-
QueryTable [18]. Query-table pairs of both datasets were collected from different
sources.

WikiTables is one of the most commonly used datasets for table retrieval
task. It contains 60 queries from two source query subsets [1,21], and the tables
extracted from Wikipedia! (dump date: 2015 October). The dataset has a total
of 3120 retrieval pairs (query-table pairs), and each retrieval pair is labelled with
0 (irrelevant), 1 (relevant), and 2 (highly relevant).

WebQueryTable uses the search logs of commercial search engines to obtain
a list of query-table pair marks the most relevant query-table pair with 1 and the
rest of the candidate list with 0, producing 21,113 query-table pairs, each query
has only one relevant table. We follow previous work [16,23,26] to separate the
dataset as training, validation, and testing with a 7:1:2 split.

4.2 Baselines

We compare our method with the following table retrieval baselines and group
them into four types:

(1) Feature-based methods: BM25 [14] calculates the score for document and
each word in the query. LTR [26] uses 18 different discrete features for regression
training using a random forest. T2VW [25] employ neural language modeling
approaches to embed tabular data into vector spaces. STR [26] extends LTR by
introducing additional 16 features. Feature 4+ NeuralNet [18] combines word-
level, phrase-level, sentence-level features and neural network architectures to
measure the relevance score between query and table. TabIESim [16] enhances
the retrieval by a combination of intrinsic and extrinsic table similarity based
on BM25 and cluster hypothesis [10].

(2) BERT-based methods: BERTA4TR [4] first use the BERT to encode
the table, and then the retrieval performance is further improved by combin-
ing features [26]. TaBERT [24] jointly learns contextual representations for
utterance and the structured schema of tables, implicitly capturing the mapping
between them based on BERT. StruBERT [19] uses horizontal and vertical
self-attentions to the encoded column- and row-based table sequences.

! https://en.wikipedia.org)/.
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Table 1. Main results on WikiTables. Bold indicates the best result, underline is
the second best, and “-” indicates the result not reported in the original paper. The
significant test p-value < 0.05 when comparing with GTR.

Method Type | Method N@5 N@10 |N@15 |N@20 |MAP
Feature-based | BM25 [14] 0.3196 |0.3377 |0.3732 | 0.4045 |0.4260
LTR [26] 0.5527 |0.5456 |0.5738 | 0.6031 |0.4112
T2VW [25] 0.5974 10.6096 |0.6312 | 0.6505 |0.4675
STR [26] 0.5951 |0.6293 |0.6590 |0.6825 |0.5141
TabIESim [16] | 0.6498 |0.6479 |— 0.6935 |0.5124

BERT-based | BERT4TR [4] |0.6361 |0.6519 |0.6558 |0.6564 |0.6311
TaBERT [24] 0.5926 |0.6108 | 0.6451 |0.6668 | 0.6326

StruBERT [19] | 0.6393 | — - - 0.6378
Multi-modal | MTR [17] 0.6631 |0.6813 |- 0.7370 |0.6058
Graph-based | MGNETS [5] |0.6373 |0.6490 |— - 0.6339
GTR [23] 0.6554 | 0.6747 |0.6978 | 0.7211 |0.6665

'DualG (Ours) |0.6707|0.6925 | 0.7259 |0.7541 | 0.7083

Table 2. Retrieval performance on WebQueryTable.

Method Precision@1 | MAP

BM25 [14] 0.4712 0.5823
Feature+NN [18]|0.5415 0.6718
BERT4TR [4] — 0.7104
GTR [23] 0.6257 0.7369
DualG (Ours) 0.6363 0.7466

(3) Multi-modal methods: MTR [17] views web tables as multimodal objects,
which uses gated multimodal units (GMUs) to learn joint-representation.

(4) Graph-based methods: MGNETS [5] constructs two table-term graphs
by mining co-occurrence relation, and conduct GCN on both graph. GTR. [23]
transforms the table into a single tabular graph with data cell, row and column
as nodes to capture multi-granular content and the layout structures.

4.3 Implementation Details

In our experiments, we use BERT-base [6] to extract semantic similarity features
hge. Similar to BERT4TR [4] and GTR [23], the words inside table are initialized
by FastText [8] with dimension 300 in query-graph matching. The number of
GCN layers L and heads N are set to 2 and 4, respectively. During training,
we set the learning rates of BERT and GCN to le-5 and le-4, respectively. The
random seed number is 0. The batch size and the number of maximum epochs
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Table 3. Ablation studies on WikiTables. N is the abbreviation of NDCG.

N@5 | N@Q10 | N@15 | N@20 | MAP
DualG (Ours) 0.6707 | 0.6925 | 0.7259 | 0.7541 | 0.7083
w/o Dual graphs 0.6161 | 0.6610 | 0.6944 | 0.7213 | 0.6849
w/0 Row graph 0.6403 | 0.6663 | 0.7100 | 0.7406 | 0.6989
w/0 Column graph 0.6100 | 0.6441 | 0.6951 | 0.7202 | 0.6757
w/o0 Context node 0.6024 | 0.6505 | 0.6925 | 0.7173 | 0.6850
w/o Inter-graph interaction 0.6117 | 0.6538 | 0.6906 | 0.7225 | 0.6823
w/o0 Adaptive fusion 0.6365 | 0.6830 | 0.7121 | 0.7436 | 0.7034
w Single graph 0.6163 | 0.6663 | 0.6888 | 0.7178 | 0.6792
replace Adaptive fusion 0.6349 | 0.6749 | 0.7050 | 0.7373 | 0.6938
replace Inter-graph interaction | 0.6247 | 0.6466 | 0.6799 | 0.7175 | 0.6891

are 16 and 5, respectively, on both datasets. Because the WikiTables dataset
does not provide a data split, we follow the previous work [4,5,16,17,23,26]
and conduct a 5-fold cross-validation on this dataset for evaluation. We use
the originally released split for WebqueryTable evaluation. Our framework is
implemented with PyTorch and DGL for graph learning.

FEvaluation Metrics. Due to distinct labeling strategies between two datasets,
we use different groups of metrics to evaluate the performance of different meth-
ods for WikiTables and WebQueryTable, following previous work [4,23,26]. On
WikiTables, we report Normalized Discounted Cumulative Gain (NDCG@n,
n={5,10,15,20}) and Mean Average Precision (MAP). Because WebQueryTable
only has one positive sample for each query, we report MAP and Precision@1
(P@1). Specifically, MAP and NDCG metrics are calculated using the TREC?.

4.4 Results

From Tables1 and 2, it can be seen that our proposed DualG method outper-
forms all other baselines on both datasets. The outstanding results confirm the
necessity of capturing the table structural information, and the effectiveness of
decoupling the whole table layout into dual graphs (row and column graph),
which contributes to the fine-grained row- and column-aware structural features
for full-fledged table understanding.

On WikiTables dataset, our method outperforms prior graph-based SOTA
GTR [23] by 1.53%, 2.81%, 3.30% on NDCG@{5,15,20} and 4.18% on MAP.
The reason is that our approach has the ability to adaptively capture precise
row- and column-aware structures based on dual-graph learning instead of the
overall layout graph without row/column distinction, and then the thorough

2 https://github.com /usnistgov/trec_eval.
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and accurate table representation can be achieved for higher performance. Com-
pared to the multimodal approach, our proposed method outperforms MTR, [17]
by 1.12% on NDCG@10 and 10.25% on MAP, which shows the limitation of
capturing table structure based on multimodal information. It is worth noting
that the significant improvement in the MAP metric indicates that DualG has
higher precise discrimination on the candidate tables.

In contrast with flat table based methods, our approach outperforms the
latest StruBERT [19] by 3.14% on NDCG@5 and 7.05% on MAP. The reason is
that flattening tables into sequences loses the structural information. While these
approaches adapt a variety of attention mechanisms to achieve an understanding
of the table, it fundamentally limits the upper bound of the model. As for the
WebqueryTable dataset, our DualG outperforms the existing SOTA by 1.06%
on Precision@1 and 0.97% on MAP, which comes to a consistent conclusion.

4.5 Analyses

Ablation Study. To evaluate the impact of each module in our method, we
perform the following ablation studies:

(1) After removing dual-graph representation learning (w/o Dual graphs),
i.e., the query only matches with table contexts, our DualG reduces by 5.46% on
NDCG@5 and 2.34% on MAP. This ablation result shows the significant efficacy
of our dual graphs, which is conducive to precise table representation for an
accurate matching process. Furthermore, eliminating one of the dual graphs
(w/0 Row/Column graph) leads to a 3.04% and 6.07% decline on NDCG@Q5,
which confirms the necessity of row and column structures.

(2) When removing the context node in our dual graphs (w/o Context node),
the performance is reduced by 6.83% on NDCG@5 and 2.33% on MAP, which
demonstrates that the table context information (e.g., web page title, table cap-
tion) can significantly profit the table understanding.

(3) Meanwhile, getting rid of inter-graph interaction when performing dual-
graph representation learning results in a 5.90% drop in NDCG@5. The reason
is that heterogeneous information is exchanged and propagated between row and
column graphs, which contributes to a thorough understanding of table layout.

(4) We replace the adaptive fusion module with an average one (setting alpha
and beta to 0.5). As shown in Table 3 (w/0 Adaptive fusion), the NDCG@5 index
declined by 3.43%, which confirms the efficacy of assigning dynamic weights to
dual graphs to fuse the unique information.

(5) We merge the edges in row and column graphs into a single graph (w Sin-
gle graph), leading to remarkable declines, which demonstrates the effectiveness
of capturing fine-grained row/column information by building dual graphs.

(6) Furthermore, we replace the inter-graph interaction module or the adap-
tive fusion module with another of these modules and observed that the retrieval
performance decreased substantially. The experimental results show that these
modules play different roles in DualG as described in the motivation.
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Fig. 3. Results of cross-dataset evaluation, training on WebQueryTable and testing on
WikiTables. Blue blocks indicate the absolute increase of our method. (Color figure
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. $ § (b) Entity Table

(c) Matrix Table

Fig. 4. Example for three types of Table.

Cross-Dataset Evaluation. To study the generalization ability, we train our
DualG and prior GTR on WebQueryTable, and evaluate on WikiTables. Con-
cretely, we use 1500, 3000, 6000 and all query-table pairs from WebQueryTable,
which are approximately half, equal, double and quadruple of WikiTables dataset
respectively. As shown in Fig. 3, blue blocks indicate the absolute increase of our
method in comparison with GTR [23]. We can observe that our DualG achieves
consistent increases on all query-table pairs of different proportions. The DualG
shows the prominent superiority on NDCG@b5, indicating that our model can
rank the related tables ahead even across datasets. In addition, training on the
full WebQueryTable tends to produce the worst performance on WikiTables,
the reason may be that a large number of training instances exacerbate the data
distribution gap between WebQueryTable and WikiTables dataset. Still, our
DualG shows the more significant advantages over GTR (e.g., 11.27% increase
on NDCG@10) when training on all query-table pairs of WebQueryTable. Over-
all, our superiority comes from the dual graphs based on row view and column
view, which contribute to the accurate table understanding and improve the
generalization of our DualG.
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Fig. 5. Dynamic changes of row graph weight aypeqn during training for various tables.

Case Study. As shown in Fig.4, table types can be summarized into Rela-
tional Table, Entity Table and Matriz Table [7,23]. To study the adaptability
of our DualG for various table types, we give 3 cases from WikiTables dataset
corresponding to three table types in Fig.4, and then record the change trend
of fusion weight neqn = mean([mean(a), ..., mean(ay)]) for the row graph
during training process in Fig.5. We can observe that: a;,ecq, for the relational
table tends to decrease with the training epoch, while the entity table shows
an uptrend. As the relational table is column information-intensive and DualG
properly focuses on a column-aware layout instead of a row-aware one, while the
entity table has rich row information and exhibits the opposite trend. The aean
weight for the matrix table converges to about 0.5, which shows DualG can cap-
ture both row- and column-aware structures correctly. Overall, our DualG has
the powerful potential of adaptability for diversified table layouts.

5 Conclusion

This paper proposes a dual-graph based method DualG for enhancing table
retrieval, which captures the local row- and column-aware layouts with table
contexts (e.g., caption), and then acquires the thorough table representation
with tailor-made interaction and fusion mechanism. Experimental results show
that the approach is effective and feasible by using it in table retrieval, and
the cross-dataset evaluation shows that it has a good generalization ability. Our
method further enriches the table retrieval community from graph perspective,
and we would like to apply it into related downstream tasks, e.g., table-based
question answering and fact verification in the future.
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In summary, I strive to ensure that the model outputs search results in an ethical
and responsible manner, and I urge my users to do the same. I will continue to adhere
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