
DOCUMENT-LEVEL EVENT EXTRACTION VIA HUMAN-LIKE READING PROCESS

Shiyao Cui1,2, Xin Cong1,2, Bowen Yu1,2, Tingwen Liu∗1,2 , Yucheng Wang1, Jinqiao Shi3

1Institute of Information Engineering, Chinese Academy of Sciences. Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences. Beijing, China

3 Beijing University of Posts and Telecommunications. Beijing, China

ABSTRACT

Document-level Event Extraction (DEE) is particularly tricky due to
the two challenges it poses: scattering-arguments and multi-events.
The first challenge means that arguments of one event record could
reside in different sentences in the document, while the second one
reflects that one document may simultaneously contain multiple such
event records. Motivated by humans’ reading cognitive to extract in-
formation of interests, in this paper, we propose a method called
HRE (Human Reading inspired Extractor for Document Events),
where DEE is decomposed into these two iterative stages, rough
reading and elaborate reading. Specifically, the first stage browses
the document to detect the occurrence of events, and the second
stage serves to extract specific event arguments. For each concrete
event role, elaborate reading hierarchically works from sentences to
characters to locate arguments across sentences, thus the scattering-
arguments problem is tackled. Meanwhile, rough reading is ex-
plored in a multi-round manner to discover undetected events, thus
the multi-events problem is handled. Experiment results show the
superiority of HRE over prior competitive methods.

Index Terms— Natural Language Processing, Information Ex-
traction, Event Extraction, Document-level Event Extraction

1. INTRODUCTION

Event Extraction (EE) aims to recognize the specific type of events
and extract the corresponding event arguments from given texts. De-
spite successful efforts [1, 2, 3, 4, 5, 6, 7] to extract events within a
sentence, a.k.a. the Sentence-level EE (SEE), these methods seem to
struggle in real-world scenarios where events are usually expressed
across sentences. Hence, SEE is moving forward to its document-
level counterpart, a.k.a. the Document-level EE (DEE).

Typically, DEE faces two challenges, scattering-arguments and
multi-events. As Fig.1 shows, the first challenge indicates that event
arguments of one event record may reside in different sentences, thus
an event cannot be extracted from a single sentence. The second
one reflects that the document may simultaneously contain multi-
ple such event records, which demands a holistic comprehension to
the document and understanding to the inter-dependency between
events. To date, most DEE methods [8, 9, 10, 11] mainly focus on
the first challenge but ignores the second one. Though Zheng et al.
(2019) [12] first propose Doc2EDAG to simultaneously tackle the
both challenges, the proposed entity-oriented method insufficiently
model the dependency between multi-events, resulting in the final
performances being unsatisfactory.

Recently, simulating human’s reading cognitive process to ad-
dress specific natural language processing (NLP) tasks [13, 14] has

*Corresponding author.

[S1.] On Oct. 12th, 2016, HaiTong Co., Ltd received a pledge from Mr.

Liu Baichun, the shareholder of Zhengxing Co., Ltd. [S2.] Mr. Liu

Baichun pledged his 4910000 shares to HaiTong Co., Ltd as liability

guarantee. [S4.] Due to market volatility, HaiTong Co., Ltd again

asked Mr. Liu Baichun for a pledge of 800000 shares. [S5.] On

Feb.1st,2018, the pledge of 800000 shares is transfered to HaiTong Co.,

Ltd [S8.] Since then, Mr. Liu Baichun have pledged 5710000

shares in total and plan to repurchase in Aug. 1st, 2018.

Examples of Evnt Records

Pledger PledgedShares Pledgee Begin Date ...

Liu Baichun 4910000shares HaiTong Co., Ltd Oct.12th, 2016 ...

Liu Baichun 800000shares HaiTong Co., Ltd Feb.1st, 2018 ...

Event Role

Event Argument

Event Record

Fig. 1. A document example with two Equity Pledge-type event
records. For each event record, its arguments reside in multiple sen-
tences. Due to space limitation, we only show associated sentences
and four event roles of each event. The original corpus is in Chinese,
and for clarity, we translate it into English.

achieved great success. Normally, three stages [15, 16, 17] are in-
volved in humans’ reading process: pre-reading, careful reading,
and post-reading. During pre-reading, human readers preview the
whole document, forming a general cognition to the document con-
tent. During careful reading, human readers attentively read each
sentence to locate detailed information according to their specific
reading purpose. During post-reading, a review is applied to the
document, checking missed details and completing the comprehen-
sion to document. The multi-stage reading process coarse-to-finely
comprehends the document, which makes it effective to extract event
facts throughout the document. Still, by far, few references have ex-
plored such a reading process in DEE.

To model the above ideas, in this paper, we propose a DEE
method called HRE (Human Reading inspired Extractor for Doc-
ument Events), which reformats human’s reading process to two
stages, rough reading and elaborate reading. For each specific
event type, rough reading is first conducted to detect the occurrence
of events. If an event is detected, elaborate reading is applied to
extract the complete event record in an argument-wise manner. Con-
cretely, for each event role, elaborate reading first locates in which
sentence the corresponding argument resides, and then extracts it.
Each extracted event argument is stored by a memory mechanism,
which models the inter-dependency between multi-events and en-
ables HRE to be aware of prior extracted events. After one complete
event record is obtained, HRE again roughly reads the document
to check missing events of the same event type, and the memory
mechanism empowers it to detect events without redundancy with
previous extracted ones. If another event occurrence is perceived,
elaborate reading will be applied again, otherwise, HRE moves to
dealing with the next event type via the same logic above until all

6337978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P

20
22

 -
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
co

us
tic

s,
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(I

C
A

SS
P)

 |
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

47
72

1

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on August 19,2022 at 08:24:15 UTC from IEEE Xplore. Restrictions apply.

event types are tackled. With the memory mechanism modeling the
inter-dependency between multiple events, the multi-round explo-
ration to rough reading frees the multi-events challenge. Meanwhile,
for each event role, the elaborate reading respectively searches the
argument-specific sentence, where arguments across sentences could
all be located and scattering-argument problem is naturally handled.
Experiment results on the largest DEE dataset [12] suggest that HRE
achieves a new state-of-the-art performance.

2. METHOD

The ultimate goal of DEE is to extract all the event records, with
the correct judgement of the event type and arguments. Algirithm 1
demonstrates the overall working flow of HRE. Note that a memory
mechanism is designed to work throughout the two reading stages,
where, for each event type, we use a trainable event-type-specific
embedding ee to initialize a memory tensor me, and me is updated
by appending the following extracted event arguments. The memory
tensor models the inter-dependency between events, enabling rough
reading to discriminate missing events to extracted events, and em-
powering elaborate reading with argument-level contexts.

2.1. Basic Encoding

Given a document D with N sentences, basic encoding involves
three steps to produce contextual representations for characters, sen-
tences and the document. First, a Sentence-Encoder is respectively
adopted to each sentence Sj , deriving character representations in
each sentence as Sj = [cj,1, cj,2, ..., cj,n], where cj,k ∈ Rd, n is
the number of characters in Sj and d is the dimension of charac-
ter representation. Next, max-pooling is applied over each sentence
Sj to get raw sentence representations srj , and then, a Document-
Encoder is utilized over [sr1, s

r
2, ..., s

r
N], obtaining document-aware

sentence representations s = [s1, s2, ..., sN] with sj ∈ Rd and
s ∈ RN×d. Finally, max-pooling is applied over s, generating the
document representation D ∈ Rd.

2.2. Rough Reading

Rough reading works to detect event occurrence. As Algirithm 1
shows that rough reading also serves to check missing events, it
needs the memory to avoid redundant detection with previous ex-
tracted events. Specifically, we utilize a Memory-Encoder over the
memory tensor me to enable information flow between events and
refine prior e-type events as follows:

m̂e = SumPooling(MemEnc(me)), (1)

where m̂e ∈ Rd is the summarized memory. When rough reading
is first applied for an e-type event, me ∈ R(1)×d only contains the
randomly initialized event-type embedding ee; When rough reading
is applied to check missing events, me ∈ R(1+lm)×d contains ee

and lm extracted event argument representations.
We remove the information about prior events from the docu-

ment, and compute the probability pe to the occurrence of an unex-
tracted e-type event in the document as follows:

D̂ = D− m̂e,

pe = sigmoid(Ws(tanh(WdD̂ + Wtee))),
(2)

where D ∈ Rd and D̂ ∈ Rd are respectively the original and
redundancy-aware document representation, Ws,Wd , Wt are

Algorithm 1: Inference process of HRE
Input: Document D;
Output: Extracted event records;

1 Encode D for the representations of the document, sentence
and character as D ∈ Rd, sj ∈ Rd and cj,k ∈ Rd ;

2 for each event type e do
3 Initialize the memory tensor me using a randomly

initialized e-type-specific embedding ee;
4 // RoughReading. ;
5 Refine me as m̂e as Eq.1 ;
6 Compute pe with m̂e and D as Eq.2 ;
7 while pe > threshold do
8 for each event role rie do
9 // Elaborate Reading. ;

10 Construct the query r̄ie as Eq.3 ;
11 Locate the jth sentence with r̄ie as Eq.4-5 ;
12 Extract argument argrie

from Sj as Eq.6-8. ;
13 Update me with argrie

and sj as Eq.9;
14 end
15 // RoughReading to check missing events. ;
16 Refine me as m̂e as Eq.1 ;
17 Compute pe with m̂e and D as Eq.2;
18 end

19 end

trainable weights. If pe is greater than the predefined threshold,
HRE perceives one e-type unextracted event and elaborate reading
is subsequently exploited to extract arguments, otherwise, HRE
moves to tackle the next event type.

During training, we use binary cross-entropy loss towards pe to
teach rough reading to detect event occurrence. Since rough reading
is employed multiple times in one document, we sum all such losses
from each rough reading as Lrr.

2.3. Elaborate Reading

After HRE detects the occurrence of one e-type event, elaborate
reading works to one-by-one extract concrete event arguments fol-
lowing a predefined event role order [12]. For each event role, a
query, which refines the current event role and inter-dependency
between previous extracted arguments, is constructed to clarify the
reading target. Specifically, we utilize a Memory-Encoder to inject
prior argument contexts into the role embedding as follows:

[r̄ie ; m̄e] = MemEnc([rie ; me]) (3)

where “[· ; ·]” means the operation of concatenation, rie ∈ R1×d

is the trainable role-specific embedding for ith role of e-type event,
me ∈ R(1+lm)×d is the raw memory tensor, and MemEnc is the
same encoder used in Eq.1. We leverage r̄ie ∈ R1×d as the query to
extract argument of current event role.

Sentence Location Module locates the sentence where the tar-
get argument resides. In one sentence, arguments sharing the same
event role are semantically similar to each other to some extent, thus
we first filter information about prior extracted arguments as follows:

g = sigmoid(Wl([m̂e ; sj])),

ŝj = sj − sj ∗ g.
(4)

where m̂e ∈ Rd is the same memory summarization from Eq.1,
sj ∈ Rd is the sentence representation, “[· ; ·]” is the concatenation

6338

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on August 19,2022 at 08:24:15 UTC from IEEE Xplore. Restrictions apply.

operation producing [m̂e ; sj] ∈ R2d, and g is a gate controlling
information redundancy. Then, HRE chooses the jth sentence as:

zs = AttnScore(r̄ie, ŝ) = softmax(
r̄ieŝ

T

√
d

),

j = argmax(zs)

(5)

where ŝ ∈ RN×d is the redundancy-aware sentence representations
of all sentences in the document, zs ∈ RN×1 is the relevance score
of each sentence computed by the scaled dot-product [18] attention,
and the sentence receiving the highest score is selected for the cor-
responding argument extraction.

In training, we use cross-entropy loss towards zs to guide the
sentence location, with the gold sentence index as label. In one doc-
ument, we sum all such losses from each sentence location as Lsl.

Argument Extraction Module aims to extract the specific event
argument and update the memory tensor. For an event role, assum-
ing that HRE decides to extract the argument from the jth sentence,
some preliminary operations are conducted as preparation. First, the
query embedding r̄ie is added to each character representation cj,k,
enriching the sentence with event-related knowledge. And then, a
symbol “[STOP]”, which is represented as the corresponding role
embedding rie, is appended to the sentence to denote the end of ex-
traction. These two operations could be formulated as:

Ŝj = [cj,1 + r̄ie, cj,2 + r̄ie, ..., cj,n + r̄ie, r
i
e]. (6)

The argument is extracted by a series of character copy operations
from Ŝj as follows:

v0 = r̄ie,

k = argmax(AttnScore(vt, Ŝj)),

vt+1 = Ŝj [k],

(7)

where kth character in the jth sentence is copied. v0 is initialized
as the query representation r̄ie to locate the first character of target
argument, and in each time step t, the character receiving the greatest
score is copied and will be used as vt+1. The copy operation will not
end until “[STOP]” is copied. Supposing that characters cj,k, cj,k+1

, cj,k+2 and “[STOP]” are copied, max pooling is applied over the
valid tokens to derive the argument representation argrie

∈ Rd as:

argrie
= MaxPooling([cj,k ; cj,k+1 ; cj,k+2]) (8)

In training, we use cross entropy loss towards AttnScore(vt, Ŝj)
to guide the argument character copy process, where, in each time
step t, the gold argument character index is used as the label. We
sum all the character copy losses in each document as Lae.

Memory Update Module appends each extracted argument to
the memory tensor me, making each reading stage aware of prior
extracted arguments. Since the semantics of a single entity may be
rare, we fuse the entity and corresponding sentence representation to
update the memory as follows:

me = [me ; (argrie
+ si)], (9)

where the updated memory tensor me ∈ R(lm+2)×d contains lm+1
arguments and will be used in the next reading stage.

2.4. Training Objective

We sum losses from rough reading, sentence location and argument
extraction in elaborate reading as Lall = λ1Lrr + λ2Lsl + λ3Lae

and jointly optimize them. λ1=1.0, λ2=1.0 and λ3=0.9 are coeffi-
cients to balance different sub-tasks.

3. EXPERIMENTS

3.1. Experiment Setup

Dataset and Metrics. We conduct experiments on the largest DEE
dataset by far, which is released by Zheng et al. (2019) [12]. The
dataset contains 32,040 documents, where five event types are an-
notated: Equity Freeze (EF), Equity Repurchase (ER), Equity Un-
derweight (EU), Equity Overweight (EO) and Equity Pledge (EP).
Besides, roughly 6 sentences are involved for one event record, and
29% documents express multiple events. We follow the standard
dataset split using 25,632/3,204/3,204 documents as training, dev
and test set. We evaluate the model using the official scorer in terms
of event-level Precision (P), Recall (R) and F1-score (F1).
Implementation Details. We follow Zheng et al. (2019) [12] to
set hyper-parameters. We set the dimension of character embedding
to 768 and threshold in rough reading for event occurrence to 0.5.
The maximum number of sentences and sentence length are 64 and
128. Transformer-Encoder [18] is adopted as the Sentence-Encoder,
Document-Encoder and Memory-Encoder.
Baselines. We choose the following baselines. DCFEE [8] con-
ducts key-sentence event detection and extracts arguments from
the key sentence and its surrounding sentences. DFCEE has two
variants, where DCFEE-O only extracts one event record while
DCFEE-M extracts multiple events. Doc2EDAG [12] designs an
entity-based directed acyclic graph (EDAG), transforming the event
record extraction to the entity-based path expending. It has a vari-
ant, GreedyDec, which greedily produces only one event record.
ArgSpan [10] extracts scattering arguments by enumerating possi-
ble argument spans within a specified scope of sentence window.
Since ArgSpan is proposed for Argument-Linking task which only
seeks to extract arguments across sentences, we form a baseline by
replacing elaborate reading with ArgSpan to extract arguments.

3.2. Main Results

HRE vs. SOTA. The left part of Table 1 reveals the overall exper-
iment results. We could see that HRE shows noticable superiority
over baselines, and we owe the improvement to the better perfor-
mance on scattering-arguments and multi-events problem. Note that
ArgSpan performs worst, we infer the reason as that, comparing
with Argument-Linking task, no specific sentence window scope is
given to scatting arguments in DEE, thus the invalid spans from the
span-enumeration based method overwhelms the model.

HRE’s Performance on Scattering-Arguments. To measure
HRE’s performance in scattering-arguments problem, we first count
the average number of sentences in which one event record in-
volves per document, and then respectively divide the documents
in the test set into five groups as Fig.2 shows. Comparing HRE
with its strongest baseline, Doc2EDAG, we could see that their
performances both decrease with the increasing number of sen-
tences where the arguments scatters, but HRE always maintains its
advantage. This reflects HRE’s remarkable ability to dealing with
scattering-arguments. We contribute HRE’s such remarkable abil-
ity to elaborate reading, which explicitly models the inter-sentence
(Eq.5) and intra-sentence (Eq.7) semantics for each argument extrac-
tion, empowering HRE’s ability to deal with scattering-arguments.

HRE’s Performance on Multi-Events. To probe HRE’s abil-
ity in Multi-Events problem, we divide the test set into a single-
event set (Single.), where each document contains only one event
record, and a multi-events set (Multi.). The detailed results on these
two sets are listed in the right part of Table 1, and we find that (1)
Performances of all models present a decreasing trend from Single.

6339

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on August 19,2022 at 08:24:15 UTC from IEEE Xplore. Restrictions apply.

Model P. R. F1 Single. (F1) Multi. (F1)

DCFEE-O [8] 65.8 53.0 58.0 61.5 49.6
DCFEE-M [12] 57.5 54.5 55.7 58.9 47.7
GreedyDec [12] 77.3 50.4 60.5 74.8 39.4
ArgSpan [10] 27.0 31.4 28.7 29.5 26.9
Doc2EDAG [12] 81.5 68.2 74.5 83.1 63.8

HRE 81.7 72.5 76.8(+2.3) 87.0(+3.9) 64.7(+0.9)

Table 1. Main results: overall event-level precision (P.), recall (R.)
and F1 on the test set (statistically significant with p < 0.05).

Model P. R. F1 Single. Multi.

HRE 80.5 71.8 75.9 85.9 66.7

Rough Reading
-Memory 25.9 75.9 38.4 31.5 48.8

Elaborate Reading
-Redundancy-aware 77.5 70.9 74.0 83.8 64.9
-Query construction 77.8 69.8 73.5 85.1 62.7
-Query enrichment 73.7 70.6 72.3 82.5 62.3

Table 2. Ablation Study on the dev set.

to Multi., which shows the increasing difficulty when scattering-
arguments meets multi-events. (2) DCFEE-O, which lacks of multi-
events handling strategy, excels DCFEE-M on Multi.. This indicates
that unreasonable multi-event tackling strategies may negate perfor-
mance. (3) Doc2EDAG performs best among baselines but lags be-
hind HRE, which confirms HRE’s superior ability to Multi-Events.

3.3. Detailed Analysis

Ablation Study. To probe the contribution of different components,
we respectively ablate to the Rough Reading and Elaborate Read-
ing. Table 2 reflects that: (1) Removing the memory exploration in
Eq.2 leads to the poorest performance, since HRE always decides
there are missing events and detect prior extracted events from the
document. (2) The result drops by 1.9% on F1 when sentence loca-
tion is conducted on the original sentence representation instead of
the redundancy-aware representation. This confirms the necessity of
removing redundant information. (3) The query, which refines the
inter-dependency between prior events, is indispensable, since the
ablation hurts the F1 by 2.4%. (4) Without adding the query into
character representations, the result degradation shows the impor-
tance of event-related information in argument extraction.

Computational Cost Analysis. We discuss the computational
cost between HRE and Doc2EDAG from two aspects. (1) We count
the inference speed, which refers to the number of documents that
the model could handle per second during model inference, as the
time computational cost. Specifically, HRE works with an inference
speed of 5.9Docs/s while that of Doc2EDAG is 7.2Docs/s. (2) We
utilize the amount of model parameters to represent the space com-
putational cost. Specifically, the parameter amount of HRE is 75.0M
while that of Doc2EDAG is 66.8M. Though HRE is slightly more
costly than Doc2EDAG, we think that HRE deserves the extra cost,
since it achieves 2.3% improvements over Doc2EDAG on the overall
F1 and shows great performance on the two challenges of DEE.

3.4. Case Study

In Fig. 3, we use a case to compare HRE with Doc2EDAG. Specif-
ically, the selected document contains two event records of Equity

5 10 15 20 2555

60

65

70

75

80

85

F1
 sc

or
e

(%
)

HRE
Doc2EDAG

Fig. 2. Performance on documents with arguments scarring in dif-
ferent number of sentences.

...... [S5.] On Sep.10th, 2018, 248474132 shares of Hongtu Co.,ltd held by
Sanbao Co.,ltd were frozen by Nanjing Court. [S7.] On Sep.10th,2018,
66900000 shares of Hongtu Co.,ltd, which were held by Sanbao Co.,ltd were
frozen by Beijing Court. [S8.] The above two freezing periods are three
years, which is calculated from the date of formal freezing. [S10.] As
the disclosure date of this announcement, Sanbao Co.,ltd holds 253212320
shares of the company, accounting for 21.46% of the total share capital of the
company, and the number of shares in pledge is 245.4 million, 98.76% of the
total held shares.

Event Records
Model Equity Holder Frozen Shares Legalinstitution Holding Shares Holding Ratio ...

Doc2E
DAG

Sanbao Co.,ltd 248474132shares Nanjing Court 253212320shares 21.46% ...
Sanbao Co.,ltd 66900000shares Beijing Court 245.4 million 98.76% ...

HRE
Sanbao Co.,ltd 248474132shares Nanjing Court 253212320shares 21.46% ...

Sanbao Co.,ltd 66900000shares Beijing Court 253212320shares 21.46% ...

Fig. 3. Case Study.

Freeze type, where HRE correctly predicts the two event records,
while Doc2EDAG wrongly predicts two arguments of the second
event record. We contribute the Doc2EDAG’s incorrect prediction
to two aspects. First, the contexts of candidate argument entities
are under-explored in the entity-orient method, which misleads
Doc2EDAG to identify event-unrelated entity as event argument.
Second, Doc2EDAG insufficiently grasps the interaction between
the first extracted event and the second one, thus it makes wrong
prediction to the both shared arguments. On the contrary, HRE
locates each argument through elaborate reading from sentence to
characters, where more fine-grained semantics for discriminating
candidate argument entities (eg. 21.46% / 98.76%) could be per-
ceived. Further, the memory mechanism enables HRE to be aware
of prior extracted events and arguments, thus HRE performs better.

4. CONCLUSION

In this paper, we propose HRE (Human Reading inspired Extractor
for Document Events) for DEE task. HRE involves two stages,
where rough reading detects the occurrence of events and elabo-
rate reading extracts concrete event arguments. As far as we know,
we take the lead to explore such a reading cognitive process for DEE,
and experiments show its effectiveness. In the future, we would like
to further adapt HRE into document-level relation extraction task.

5. ACKNOWLEDGEMENTS

This work is supported by the National Key Research and Develop-
ment Program of China (grant No.2021YFB3100600), the Strategic
Priority Research Program of Chinese Academy of Sciences (grant
No.XDC02040400) , the Youth Innovation Promotion Association
of CAS (Grant No. 2021153) and National Natural Science Founda-
tion of China (Grant No.61902394).

6340

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on August 19,2022 at 08:24:15 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun
Zhao, “Event extraction via dynamic multi-pooling convolu-
tional neural networks,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Beijing, China, July
2015, pp. 167–176, Association for Computational Linguistics.

[2] Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao,
“Automatically labeled data generation for large scale event ex-
traction,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), Vancouver, Canada, July 2017, pp. 409–419, Associ-
ation for Computational Linguistics.

[3] Xiao Liu, Zhunchen Luo, and Heyan Huang, “Jointly multiple
events extraction via attention-based graph information aggre-
gation,” in Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, Brussels, Bel-
gium, Oct.-Nov. 2018, pp. 1247–1256, Association for Com-
putational Linguistics.

[4] Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and Dong-
sheng Li, “Exploring pre-trained language models for event
extraction and generation,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Flo-
rence, Italy, July 2019, pp. 5284–5294, Association for Com-
putational Linguistics.

[5] Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang Liu,
“Event extraction as machine reading comprehension,” in Pro-
ceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), Online, Nov. 2020, pp.
1641–1651, Association for Computational Linguistics.

[6] Xinya Du and Claire Cardie, “Event extraction by answering
(almost) natural questions,” in Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP), Online, Nov. 2020, pp. 671–683, Association
for Computational Linguistics.

[7] Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang,
Annan Li, Le Sun, Meng Liao, and Shaoyi Chen, “Text2Event:
Controllable sequence-to-structure generation for end-to-end
event extraction,” in Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Online, Aug. 2021, pp. 2795–2806,
Association for Computational Linguistics.

[8] Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and Jun Zhao,
“DCFEE: A document-level Chinese financial event extraction
system based on automatically labeled training data,” in Pro-
ceedings of ACL 2018, System Demonstrations, Melbourne,
Australia, July 2018, pp. 50–55, Association for Computa-
tional Linguistics.

[9] Xinya Du and Claire Cardie, “Document-level event role filler
extraction using multi-granularity contextualized encoding,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, July 2020, pp. 8010–8020,
Association for Computational Linguistics.

[10] Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins, and Ben-
jamin Van Durme, “Multi-sentence argument linking,” in Pro-
ceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, Online, July 2020, pp. 8057–8077,
Association for Computational Linguistics.

[11] Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe Ma,
and Eduard Hovy, “A two-step approach for implicit event ar-
gument detection,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online, July
2020, pp. 7479–7485, Association for Computational Linguis-
tics.

[12] Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian, “Doc2EDAG:
An end-to-end document-level framework for Chinese finan-
cial event extraction,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), Hong Kong, China, Nov. 2019, pp.
337–346, Association for Computational Linguistics.

[13] L. Luo, Xiang Ao, Y. Song, Feiyang Pan, Min Yang, and Q. He,
“Reading like her: Human reading inspired extractive summa-
rization,” in EMNLP/IJCNLP, 2019.

[14] Zeyang Lei, Yujiu Yang, Min Yang, Wei Zhao, J. Guo, and
Y. Liu, “A human-like semantic cognition network for aspect-
level sentiment classification,” in AAAI, 2019.

[15] P. Avery and Michael F. Graves, “Scaffolding young learners’
reading of social studies texts.,” Social studies and the young
learner, vol. 9, pp. 10–14, 1997.

[16] A. Sarıçoban, “Reading strategies of successful readers
through the three phase approach,” The Reading Matrix : an
International Online Journal, vol. 2, 2002.

[17] Elif Leyla Toprak and Gamze Almacıoğlu, “Three reading
phases and their applications in the teaching of english as a for-
eign language in reading classes with young learners,” Journal
of Language and Linguistic Studies, vol. 5, pp. 20–36, 2009.

[18] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin, “Attention is all you need,” ArXiv, vol.
abs/1706.03762, 2017.

6341

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on August 19,2022 at 08:24:15 UTC from IEEE Xplore. Restrictions apply.

