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ABSTRACT
Cross-lingual Named Entity Recognition (NER) aims to address the
challenge of data scarcity in low-resource languages by leveraging
knowledge from high-resource languages. Most current work relies
on general multilingual language models to represent text, and then
uses classic combined tagging (e.g., B-ORG) to annotate entities;
However, this approach neglects the lack of cross-lingual alignment
of entity representations in language models, and also ignores the
fact that entity spans and types have varying levels of labeling diffi-
culty in terms of transferability. To address these challenges, we pro-
pose a novel framework, referred to as DLBri, which addresses the
issues of representation and labeling simultaneously. Specifically,
the proposed framework utilizes progressive contrastive learning
with source-to-target oriented sentence pairs to pre-finetune the
language model, resulting in improved cross-lingual entity-aware
representations. Additionally, a decomposition-then-combination
procedure is proposed, which separately transfers entity span and
type, and then combines their information, to reduce the difficulty
of cross-lingual entity labeling. Extensive experiments on 13 diverse
language pairs confirm the effectiveness of DLBri. The code for this
framework is available at https://github.com/AIRobotZhang/DLBri.
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1 INTRODUCTION
Named Entity Recognition (NER) is one of the important and critical
tasks in knowledge acquisition and information retrieval, and has
been widely used in web search [9, 10, 20, 28, 56] and so forth. NER
is to tag entity spans in text with their corresponding type (e.g., per-
son), and has gained considerable improvements with deep learning
and abundant labeled data, but this situation brings the rock-ribbed
challenge to low-resource languages. Thus, cross-lingual NER was
proposed and has attracted great research interest, which transfers
information from high-resource language to low-resource ones.

Recent methods for addressing cross-lingual NER typically uti-
lize a framework that involves utilizing a multilingual pre-trained
encoder, such as mBERT [6], to encode text in both the source
and target languages, and then applying a commonly used com-
bined tagging scheme (e.g., B-ORG) to label each word with its
position and type [21, 48, 61]. Additionally, a language adversarial
discriminator [4] or cross-lingual similarity loss [21] is employed
as an multi-task training objective to reduce the distance between
different languages. However, it is our belief that this framework,
despite producing good results, does not fully take into account
the characteristics of cross-lingual NER in two crucial aspects: 1)
Cross-lingual entity representation: current methods rely on
mBERT to lead off cross-lingual tranfer, but mBERT is a language
model trained on multilingual text, whose goal is general language
understanding, and is therefore not well suited to understanding
and aligning cross-lingual entities. For example, “卡塔尔” in Chi-
nese and “Qatar” in English should have similar representations
in the encoder to perform cross-lingual labeling, but this is not
achieved in a general multilingual model. 2) Cross-lingual entity

 

1230

https://github.com/AIRobotZhang/DLBri
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539618.3591757
https://doi.org/10.1145/3539618.3591757
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539618.3591757&domain=pdf&date_stamp=2023-07-18


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Xinghua Zhang et al.

Table 1: The drops of F1 score (%) on target-language test data
finetuning mBERT on source-language training data instead
of target-language training data (averaged over each dataset).

Dataset
(Source → #Target)

Subtask Span
Extraction (↓) Type

Prediction (↓)

CoNLL (EN → 3 Western) 5.79 8.10
WikiAnn (EN → 3 Non-western) 24.74 7.81
LOWNER (EN → 7 Non-western) 18.55 9.81

labeling: the combined tag used in current cross-lingual NER ex-
tracts entity spans and predicts types simultaneously, which causes
entangled entity information. Although entity span and type are
closely related, these two kinds of information have different cross-
lingual transfer difficulties. For example, as shown in Table 1, the
performance of entity span extraction drops significantly more on
distant cross-lingual pairs (about 20% decline), while type predic-
tion is less affected by the language discrepancy between the source
and target (less than 10% decline). Prior hybrid transfer methods
do not take into account these discrepant transfer barriers, which
leads to coarse and insufficient language transfer.

This paper develops the dual-level gap bridging framework DL-
Bri from the viewpoints of representation and labeling. To address
the first issue, from the representation point of view, we pro-
pose a progressive contrastive bridging method to pre-finetune
mBERT for learning cross-lingual entity-aware representations.
This method blends the context and entities of two languages to
construct two intermediate language text sequences, one containing
the source language context and the target language entities, and
the other containing the target language context and the source lan-
guage entities. By performing contrastive learning on entity words
from the source language to the intermediate and then to the target,
language discrepancy can be gradually bridged, especially for dis-
tant languages. To address the second issue, we decompose the NER
task into span extraction and type prediction subtask for respective
cross-lingual transfer, and then perform the subtask combination for
modeling the relevance of two subtasks from the labeling point of
view. This decomposition-then-combination procedure reduces the
transfer complexity and encourages capturing more fine-grained in-
formation for contributing to entity knowledge transfer to a higher
degree. Comprehensively, representation-level gap bridging is first
conducted for effectively narrowing the language discrepancy, and
then labeling-level gap bridging is expected to transfer the entity
span and type knowledge separately from labeled source-language
data to unlabeled target-language data. These two steps are per-
formed under the semi-supervised learning framework, following
the common practice in cross-lingual NER [21, 48, 61].

The major contributions of this paper are summarized as follows:
• We find that existing cross-lingual NER models rely on multilin-
gual language models that only learn general language knowl-
edge, lacking the ability to understand entities across languages.
Therefore, we propose a progressive contrastive bridging method
to pre-finetune the model, and gradually encourage entity align-
ment between the source and target languages, thus learning
better cross-lingual entity-aware representations.

• We first observe and analyze that in cross-lingual NER, entity
spans and types have different transfer difficulties, so we propose
a decomposition-then-combination procedure, which separately
transfers the entity span and type information, reducing the
difficulty of cross-lingual entity labeling.

• We evaluate our method on 13 diverse language pairs, and ex-
perimental results and analyses demonstrate the rationality and
effectiveness of our DLBri framework especially on non-western
languages (about average 8.82% absolute F1 score increase).

2 RELATEDWORK
Cross-lingual NER aims to handle the labeled data scarcity in
low-resource languages and can be grouped into data transfer based
and model transfer based methods. Data transfer based methods [2,
3, 8, 11, 30, 51] convert high- and low-resource languages into the
unified text feature space by mapping [55, 62] or translator [14, 27],
reducing the language discrepancy. For example, Ni et al. [30] trans-
formed target-language word embeddings into source-language
space based on paired bilingual dictionary. Jain et al. [14] used
machine translation system to translate sentences and entities for
improving annotation-projectionmethods. Liu et al. [24] introduced
entity placeholders and boundary identifiers to avoid problems such
as word order change and entity span determination after translat-
ing. Model transfer based methods [1, 13, 15, 49] aim to exploit the
knowledge from the source-language model by knowledge distil-
lation [4, 22], parameter sharing [16, 60] and so on. Wu et al. [47]
proposed a teacher-student learning method where the trained
models on the source language serve as teacher to train a student
model on unlabeled data in target language. Li et al. [21] introduced
the similarity metric model as an auxiliary task based on knowledge
distillation and multi-task learning to effectively transfer knowl-
edge across languages. As it should be, some methods [37, 48, 61]
are both data and model transfer based.

Decomposing task into multiple subtasks has been widely
studied in various fields, such as question answering [32], object
detection [33, 36, 52] and information extraction [44, 54, 58]. Ma
et al. [25] proposed a decomposed meta-learning method for few-
shot NER. To deal with nested entities, some studies [18, 38] firstly
detected entity spans and then performed span classification. Liu
et al. [23] decomposed the joint extraction into relation extraction
and head-tail entity extraction to solve overlapping problems. Con-
trastive learning [17, 39, 46] is commonly used and has achieved
promising performance in natural language processing (NLP). Das
et al. [5] proposed contrastive learning technique to optimize the
inter-token distribution distance for few-shot NER.

Different from prior studies, this paper proposes to bridge cross-
lingual gap from representation and labeling level, where we devise
progressive contrastive bridging for learning better cross-lingual en-
tity representations, and decompose NER task into span extraction
and type prediction subtask for considering discrepant transferabil-
ity of entity span and type, studied for the first time in this paper.

3 PRELIMINARIES
3.1 Task Definition
Given a sentence 𝑋=<𝑥1, 𝑥2, ..., 𝑥𝑛>, 𝑥𝑖 is a word (token) and 𝑛 is
length of the sentence. An entity is a span of 𝑋 with a category:
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𝑒 = {(𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑠𝑡𝑎𝑟𝑡+1, ..., 𝑥𝑒𝑛𝑑 ), 𝑙𝑒 }, where 𝑙𝑒 ∈ C is an entity type
(category), e.g., person, location. C is a set of entity types. NER is to
detect entity spans and tag corresponding entity types. Following
previous cross-lingual NER studies [4, 21, 22, 47, 48, 61], we focus
on transferring from high-resource language (S) to low-resource
language (T ), where there are 𝑁S labeled sentences in source lan-
guage S denoted as DS , and the target language T only has 𝑁𝑢T
unlabeled sentences denoted as D𝑢

T . The entity type set in S and
T is identical. Formally, cross-lingual NER is to learn a model by
using labeled DS and unlabeled D𝑢

T to achieve good performance
on target-language test data, which is typically a semi-supervised
learning problem with cross-lingual gap. For example, main-
stream methods [4, 21, 47] use semi-supervised knowledge distilla-
tion [12] to train a student model on unlabeled D𝑢

T with pseudo
labels provided by the teacher model trained on labeled DS .

3.2 Semi-supervised Learning (SSL) Framework
As described above, cross-lingual NER is a semi-supervised learn-
ing problem in essence. Inspired by [22, 29, 34, 57], we introduce
the confidence-based semi-supervised learning framework in our
method to exploit labeled source dataDS and unlabeled target data
D𝑢

T . It consists of training teacher model on DS , then teaching
student models and conducting confidence-based learning on D𝑢

T .
Source Teacher Distillation.We first train the teacher network
on labeled source-language data DS via cross entropy loss:

LS = − 1
|DS |

∑︁
𝑋𝑖 ∈DS

∑︁
𝑥 𝑗 ∈𝑋𝑖

|C𝑡𝑎𝑔 |∑︁
𝑘=1

𝑦 𝑗,𝑘 log(𝑝 (𝑡𝑎𝑔𝑘 |𝑥 𝑗 )) (1)

where 𝑥 𝑗 is a word in sentence 𝑋𝑖 . 𝑦 𝑗,𝑘 is the k-th element in 𝑦 𝑗 ,
and 𝑦 𝑗 is the one-hot label of 𝑥 𝑗 . C𝑡𝑎𝑔 is a label set of the task.

Based on the trained teacher model, we perform knowledge
distillation on unlabeled target data D𝑢

T . Specifically, the student
model is respectively taught by distilling from teacher network
using Kullback-Leibler divergence loss:

L𝐷𝑖𝑠𝑡𝑖𝑙 =
1

|D𝑢
T |

∑︁
𝑋𝑖 ∈D𝑢

T

∑︁
𝑥 𝑗 ∈𝑋𝑖

𝐷𝐾𝐿 (𝑝 (𝑡𝑎𝑔 |𝑥 𝑗 ) | |𝑝𝑡𝑒𝑎 (𝑡𝑎𝑔 |𝑥 𝑗 )) (2)

where 𝑝 (𝑡𝑎𝑔 |𝑥 𝑗 ) and 𝑝𝑡𝑒𝑎 (𝑡𝑎𝑔 |𝑥 𝑗 ) are label probability distributions
respectively predicted by the student and teacher model on D𝑢

T .
Confidence-based Learning. To effectively explore the target
language dataD𝑢

T , we then propose co-matching process using two
student models on D𝑢

T together with the above source-language
knowledge distillation. Concretely, one student model makes its
predictions match the high-confidence predictions of its peer model
tomutually train themodel via cross entropy loss. Thus, the training
objective of co-matching procedure for one model is defined as:

L𝐶𝑜𝑀 = − 1
|D𝑢

T |
∑︁

𝑋𝑖 ∈D𝑢
T

∑︁
𝑥 𝑗 ∈𝑋𝑖

I>𝛿

|C𝑡𝑎𝑔 |∑︁
𝑘=1

𝑦 𝑗,𝑘 log(𝑝 (𝑡𝑎𝑔𝑘 |𝑥 𝑗 )) (3)

where 𝑦 𝑗,𝑘 is the k-th element in 𝑦 𝑗 , 𝑦 𝑗 is the pseudo one-hot label
predicted by the other model. I>𝛿 ∈ {0, 1} and I>𝛿 equals 1 when
𝑚𝑎𝑥 (𝑝 (𝑡𝑎𝑔 |𝑥 𝑗 )) > 𝛿 . 𝛿 is confidence threshold and 𝑝 (𝑡𝑎𝑔 |𝑥 𝑗 ) is the
probability distributions for word 𝑥 𝑗 predicted by the other model.

Conversely, we can also utilize the low-confidence predictions for
training two student models themselves. As high-confidence predic-
tions are more reliable, low-confidence predictions are unlikely to
be correct. Therefore, each model learns by penalizing itself using
the low-confidence predictions. That is the most confident label
predicted by the model with probability value lower than 𝛿 should
be suppressed:

L𝑃 = − 1
|D𝑢

T |
∑︁

𝑋𝑖 ∈D𝑢
T

∑︁
𝑥 𝑗 ∈𝑋𝑖

I<𝛿

|C𝑡𝑎𝑔 |∑︁
𝑘=1

𝑦 𝑗,𝑘 log(1 − 𝑝 (𝑡𝑎𝑔𝑘 |𝑥 𝑗 )) (4)

where I<𝛿 = 1 when𝑚𝑎𝑥 (𝑝 (𝑡𝑎𝑔 |𝑥 𝑗 )) < 𝛿 , otherwise is 0. 𝑦 𝑗,𝑘 is
predicted by the student model itself.

4 METHODOLOGY
Figure 1 depicts overview of dual-level gap bridging framework
DLBri. First, (Step 1) progressive contrastive bridging is proposed
to learn cross-lingual entity-aware representations for reducing lan-
guage discrepancy. Then, (Step 2) we performNER task decomposition-
then-combination procedure to transfer knowledge more effectively
in subtasks and then obtain the relevance between subtasks.

4.1 Progressive Contrastive Bridging
To better understand and align cross-lingual entities instead of
directly applying multilingual BERT (mBERT) for transfer, we build
the source-to-target oriented sentence pairs to pre-finetune mBERT
with contrastive bridging loss for gradually narrowing the language
discrepancy and providing strong support for subsequent transfer.

4.1.1 Source-to-Target Oriented Sentence Pair. To effectively align
cross-lingual entities and make up the language difference, we
construct the intermediate languages for forming the source-to-
target oriented sentence pairs. Concretely, we assemble two kinds
of intermediate language text, including source oriented interme-
diate and target oriented intermediate sentence. Source oriented
intermediate sentence is equipped with source-language (e.g., Eng-
lish) context and target-language (e.g., Chinese) entities, while tar-
get oriented intermediate one has the inverse composition. These
two intermediate-language texts are all transformed from source-
language training data using Google translation system (https:
//cloud.google.com/translate). However, NER is a token-level task
which faces the matching challenge between the word and label
after translation. Following Liu et al. [24], we mark each entity in
the sentence with a special symbol (e.g., “[]”) before feeding it into
the translation system for locating the entity in the translated text.

As shown in top right corner of Figure 1, the sentence “The 2022
World Cup was held in Qatar” in source language is converted into
source oriented intermediate text “The 2022 World Cup was held in
卡塔尔” and target oriented intermediate text “2022年世界杯在
Qatar举行”. The source-language sentence is also translated into
target-language text “2022年世界杯在卡塔尔举行”. Then we
get three source-to-target oriented pairs with these four sentences:
source language and source oriented intermediate sentences, source
oriented intermediate and target oriented intermediate sentences,
and target oriented intermediate and target language sentences,
which gradually incline from source to target language style. For
simplicity, we assume above sentence contains one entity (Qatar).
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Figure 1: Overview of DLBri which comprises of: Progressive Contrastive Bridging for better cross-lingual entity-aware repre-
sentations and reducing language discrepancy, NER Task Decomposition-then-Combination for more effective transfer.

4.1.2 Contrastive Bridging. Figure 1 upper part depicts the con-
trastive learning procedure. The two sentences in each source-
to-target oriented pair are respectively encoded by multilingual
BERT [6]. Specifically, two sentences 𝑋 = <𝑥1, 𝑥2, ..., 𝑥𝑛> and 𝑋̃

= <𝑥1, 𝑥2, ..., 𝑥𝑚> are separately input into encoder to extract the
hidden representations of all words H = <h1, h2, ..., h𝑛> ∈ R𝑛×𝑑
and H̃ = <h̃1, h̃2, ..., h̃𝑚> ∈ R𝑚×𝑑 as:

H = mBERT(𝑋 ), H̃ = mBERT(𝑋̃ ) (5)

where 𝑑 is the last hidden layer dimension.
For each entity 𝑒 in one sentence of source-to-target oriented

pair, we can get the corresponding entity 𝑒 in another sentence,
e.g., “Qatar” and “卡塔尔” in top left corner of Figure 1. Then the
positive examples of each token 𝑥𝑖 in entity 𝑒 are tokens {𝑥𝑜 , ..., 𝑥𝑙 }
of its corresponding entity 𝑒 , while the other words in another sen-
tence can form negative pairs with 𝑥𝑖 . Let 𝑠𝑖𝑚(𝒖, 𝒗) = 𝒖⊤𝒗/∥𝒖∥∥𝒗∥
denote the dot product between ℓ2 normalized 𝒖 and 𝒗, which is
the cosine similarity for measuring the positive and negative pairs.
The contrastive loss function for token 𝑥𝑖 in entity 𝑒 is defined as:

L𝑐𝑡𝑠𝑖 = − 1
|𝑋̃ |

𝑚∑︁
𝑗=1
I𝑥̃ 𝑗 ∈𝑒 log

exp(𝑠𝑖𝑚(h𝑖 , h̃𝑗 )/𝜏)∑𝑚
𝑘=1 exp(𝑠𝑖𝑚(h𝑖 , h̃𝑘 )/𝜏)

(6)

where 𝜏 is a scalar temperature hyperparameter. I ∈ {0, 1} is indi-
cator function, I𝑥̃ 𝑗 ∈𝑒 = 1 when word 𝑥 𝑗 is a token of entity 𝑒 . In
this way, same entities in different languages stay close to each
other while dissimilar ones are far apart. It is worth noting that
positive and negative samples of each token 𝑥𝑖 in one sentence are

all from another sentence of the source-to-target oriented pair. For
instance, in top left of Figure 1, token Qatar forms positive pairs
with tokens {卡,塔,尔} in another sentence, while the remainder
tokens are negative samples. For three sentence pairs in Figure 1,
we continually train the model on these pairs with contrastive loss.

4.2 Task Decomposition-then-Combination
With progressive contrastive bridging above, we can get the bridged
model which effectively adapts to the language discrepancy be-
tween source and target language. To perceive different transfer-
ability of entity span and type information, we decompose NER task
into span extraction and type prediction subtask, and perform respec-
tive cross-lingual transfer under semi-supervised learning frame-
work (Sec. 3.2) in each subtask. Afterwards, subtask combination is
devised to build correlation of subtasks for further improvement.

4.2.1 Decomposing NER Task into Subtasks for Transfer. We de-
compose NER task into span extraction and type prediction subtask
for respective cross-lingual transfer in each subtask.
Span Extraction Subtask. This subtask aims to extract entity
spans in text with label set C𝑠𝑝 = {B, I, O}. Given a sentence 𝑋 =

<𝑥1, 𝑥2, ..., 𝑥𝑛>, its hidden sequence representations are H = <h1,
h2, ..., h𝑛> and entity span distribution for each word 𝑥𝑖 can be got:

H = Encoder𝑠𝑝 (𝑋 )

𝑝 (C𝑘𝑠𝑝 |𝑥𝑖 ) =
exp{w⊤

𝑘
h𝑖 + 𝑏𝑘 }∑ |C𝑠𝑝 |

𝑗=1 exp{w⊤
𝑗
h𝑖 + 𝑏 𝑗 }

(7)
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where [w𝑘 ;𝑏𝑘 ] are classification head corresponding to k-th entity
span class C𝑘𝑠𝑝 . 𝑝 (C𝑘𝑠𝑝 |𝑥𝑖 ) is the probability that 𝑥𝑖 belongs to k-th
class. 𝐵, 𝐼,𝑂 indicate the beginning, inside of entity and non entity.

To transfer knowledge from source language to the target, we
introduce the semi-supervised learning framework described in
section preliminaries (Sec. 3.2), following the common practice in
cross-lingual NER [21, 22, 48, 61]. From Eq. 1 to 4, the 𝑡𝑎𝑔 is span
label and C𝑡𝑎𝑔 is C𝑠𝑝 , and all label probability distributions are
obtained using Eq. 7. Encoder𝑠𝑝 of two student models and their
corresponding teachers are all respectively initialized by the two
bridged models trained in Sec. 4.1. Based on the semi-supervised
learning, entity span knowledge is transferred from labeled source-
language data to the unlabeled target-language data.

Span Boundary Consistency. In comparison with type prediction
subtask, span extraction needs more label dependency and explicit
boundary modeling, and its cross-lingual difficulty is greater as
shown in Table 1. Besides extracting entity spans based on token-
wise sequence labeling, we expect that the span extraction model
captures the explicit boundary information and more bridging fea-
tures for stimulating cross-lingual transfer. Specifically, we calculate
the attentive correlation on each student model of semi-supervised
learning framework for a token pair (𝑥𝑖 , 𝑥 𝑗 ) following the idea of
self-attention [43]:

q𝑖 = W𝑞h𝑖 + 𝑏𝑞, k𝑖 = W𝑘h𝑖 + 𝑏𝑘 (8)
𝑆𝑐𝑜𝑟𝑒𝑏𝑑 (𝑖, 𝑗) = q⊤𝑖 k𝑗 +W𝑏𝑑 (h𝑖 + h𝑗 ) (9)

where W𝑞 , W𝑘 , W𝑏𝑑 , 𝑏𝑞 and 𝑏𝑘 are trainable parameters. h𝑖 is hid-
den representation for token 𝑥𝑖 . Then we compute boundary scores
for two student models of Sec. 3.2 as 𝑆𝑐𝑜𝑟𝑒1

𝑏𝑑
(𝑖, 𝑗) and 𝑆𝑐𝑜𝑟𝑒2

𝑏𝑑
(𝑖, 𝑗).

The span boundary consistency loss is finally defined as:

LT
𝑆𝐵𝐶

=
1

|D𝑢
T |

∑︁
𝑋𝑙 ∈D𝑢

T

|𝑋𝑙 |∑︁
𝑖=1

|𝑋𝑙 |∑︁
𝑗=𝑖

(𝑆𝑐𝑜𝑟𝑒1
𝑏𝑑

(𝑖, 𝑗) − 𝑆𝑐𝑜𝑟𝑒2
𝑏𝑑

(𝑖, 𝑗)) (10)

where𝑋𝑙 is a sentence inD𝑢
T and we only calculate the consistency

on the upper triangular matrix as shown in the bottom left of
Figure 1. To enhance the language transfer, we also compute the
span boundary consistency loss on source data DS by sharing all
consistency parameters with target data D𝑢

T , notated as LS
𝑆𝐵𝐶

.
Type Prediction Subtask. The aim of this subtask is to predict
the entity category in the label set C𝑡𝑝 = {PER, LOC, ..., O} for
each word of the sentence. Similarly, the hidden representations
and entity type distribution for word 𝑥𝑖 can be obtained:

H = Encoder𝑡𝑝 (𝑋 )

𝑝 (C𝑡𝑡𝑝 |𝑥𝑖 ) =
exp{w⊤

𝑡 h𝑖 + 𝑏𝑡 }∑ |C𝑡𝑝 |
𝑗=1 exp{w⊤

𝑗
h𝑖 + 𝑏 𝑗 }

(11)

where [w𝑡 ;𝑏𝑡 ] are classification head parameters corresponding
to the t-th entity type class C𝑡𝑡𝑝 . 𝑝 (C𝑡𝑡𝑝 |𝑥𝑖 ) is the probability that 𝑥𝑖
belongs to the t-th class.

Similar to span extraction subtask, we transfer entity type knowl-
edge from labeled source-language data to unlabeled target-language
data under the semi-supervised framework (Sec. 3.2), where the 𝑡𝑎𝑔
is type label and C𝑡𝑎𝑔 is C𝑡𝑝 in Eq. 1 to 4, and all label probability
distributions are obtained using Eq. 11. The parameter initialization
of Encoder𝑡𝑝 is also from Sec. 4.1, like in span extraction subtask.

4.2.2 Subtask Combination. Despite of more effective transfer in
subtask, two subtasks can actually be enhanced by each other for
further improvement. For instance, all words of an entity span
in span extraction should have the identical entity type in type
prediction subtask. Therefore, as shown in Figure 1, we devise
the subtask interaction layer together with distilling the knowledge
from span extraction and type prediction models trained in subtask
transfer (Sec. 4.2.1).

Subtask Interaction Layer. The subtask interaction aims to ex-
change label information between two subtasks. Inspired by [19,
35, 53], we conduct label attention over entity span and type la-
bel to obtain the span label and type label related representations
for each word, and then these two related features are interacted
by co-interactive attention for the exchange of subtask informa-
tion. Concretely, we utilize parameters w of the fully-connected
span label and type label classification layer in Eq.7, 11 as label
representations, then the span label embedding matrix is notated
as W𝑠𝑝 ∈ R |C𝑠𝑝 |×𝑑 and type label matrix is W𝑡𝑝 ∈ R |C𝑡𝑝 |×𝑑 .

To get label related representations, we use an attention mecha-
nism over each subtask labels to obtain explicit label features for
each word. The label related representations are computed by:

A = softmax(HW⊤
𝑐 ), H̃𝑐 = H + AW𝑐 (12)

whereH ∈ R𝑛×𝑑 is hidden sequence representations in each subtask.
W𝑐 ∈ {W𝑠𝑝 ,W𝑡𝑝 }, and then we can calculate the corresponding
H̃𝑠𝑝 = <h̃𝑠𝑝1 , h̃𝑠𝑝2 , ..., h̃𝑠𝑝𝑛 >, H̃𝑡𝑝 = <h̃𝑡𝑝1 , h̃𝑡𝑝2 , ..., h̃𝑡𝑝𝑛 >. Thus, for the
span label related feature h̃𝑠𝑝

𝑖
of word 𝑥𝑖 , we use the biaffine mech-

anism [7] as co-interactive attention to obtain the span correlation
score with each type label related feature h̃𝑡𝑝

𝑗
:

𝑟
𝑠𝑝

𝑖, 𝑗
= h̃𝑠𝑝

𝑖
⊤U𝑏𝑖𝑎 h̃

𝑡𝑝

𝑗
+W𝑏𝑖𝑎 (h̃

𝑠𝑝

𝑖
⊕ h̃𝑡𝑝

𝑗
) + 𝑏𝑏𝑖𝑎

𝛼
𝑠𝑝

𝑖, 𝑗
= softmax(𝑟𝑠𝑝

𝑖, 𝑗
), 𝑗 ∈ [1, 𝑛]

(13)

where h̃𝑠𝑝
𝑖

⊤ is the transposition of h̃𝑠𝑝
𝑖
, U𝑏𝑖𝑎 is the weight matrix

of bi-linear term and W𝑏𝑖𝑎 is the weight matrix of linear term. ⊕ is
the vector concatenation. Similarly, the type correlation score with
each span label related feature is denoted as 𝛼𝑡𝑝

𝑖, 𝑗
. Ultimately, based

on the co-interactive correlation score , we can attain the hidden
representations of word 𝑥𝑖 after interaction in each subtask:

ĥ𝑠𝑡𝑖 =

𝑛∑︁
𝑗=1

𝛼
𝑠𝑝

𝑖, 𝑗
h̃𝑡𝑝
𝑗
, ĥ𝑡𝑠𝑖 =

𝑛∑︁
𝑗=1

𝛼
𝑡𝑝

𝑖, 𝑗
h̃𝑠𝑝
𝑗

h̄𝑠𝑝
𝑖

= h̃𝑠𝑝
𝑖

⊕ ĥ𝑠𝑡𝑖 , h̄𝑡𝑝
𝑖

= h̃𝑡𝑝
𝑖

⊕ ĥ𝑡𝑠𝑖

(14)

Knowledge Distillation. Based on the interacted representation
h̄𝑠𝑝
𝑖

and h̄𝑡𝑝
𝑖

in two subtasks, we can get the span label and type label
probability distributions 𝑝𝑠𝑝

𝑖
and 𝑝𝑡𝑝

𝑖
via fully-connected classifier

as in Eq.7 and Eq.11. And then we distil knowledge from subtask
transfer (Sec. 4.2.1) by calculating with Kullback-Leibler divergence:

L𝑖𝐾𝐷 =
∑︁

𝑐∈{𝑠𝑝,𝑡𝑝 }
𝐷𝐾𝐿 (𝑝𝑐𝑖 | |𝑝

𝑐,1
𝑖

) + 𝐷𝐾𝐿 (𝑝𝑐𝑖 | |𝑝
𝑐,2
𝑖

) (15)

where 𝑝
𝑐,1
𝑖

and 𝑝
𝑐,2
𝑖

(𝑐 ∈ {𝑠𝑝, 𝑡𝑝}) are label probability distribu-
tions respectively predicted by two student models trained in semi-
supervised framework (introduced in Sec. 3.2, used in Sec. 4.2.1) in
each subtask. 𝑝𝑐

𝑖
is 𝑝𝑠𝑝

𝑖
or 𝑝𝑡𝑝

𝑖
.
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Algorithm 1 Training procedure of our method
Input: labeled source language DS and unlabeled target data D𝑢

T .
Output: span extraction model Θ𝑠𝑝 and type prediction Θ𝑡𝑝 .
1: ⊲ Step 1: Progressive Contrastive Bridging
2: Optimize two bridging models Θ1

𝑏𝑟𝑖
, Θ2

𝑏𝑟𝑖
using L𝑐𝑡𝑠

𝑖
(Eq. 6).

3: ⊲ Step 2: NER Task Decomposition-then-Combination
4: For span extraction subtask:
5: Train Θ

𝑠𝑝,1
S , Θ𝑠𝑝,2S by respectively fine-tuning Θ1

𝑏𝑟𝑖
, Θ2

𝑏𝑟𝑖
on

DS using LS (Eq. 1).
6: Train Θ

𝑠𝑝,1
T , Θ𝑠𝑝,2T by respectively fine-tuning Θ1

𝑏𝑟𝑖
, Θ2

𝑏𝑟𝑖
us-

ing L𝐷𝑖𝑠𝑡𝑖𝑙+L𝐶𝑜𝑀+L𝑃 on D𝑢
T and LS

𝑆𝐵𝐶
+LT

𝑆𝐵𝐶
on DS , D𝑢

T .
7: For type prediction subtask:
8: Train Θ

𝑡𝑝,1
S , Θ𝑡𝑝,2S by respectively fine-tuning Θ1

𝑏𝑟𝑖
, Θ2

𝑏𝑟𝑖
on

DS using LS .
9: Train Θ

𝑡𝑝,1
T , Θ𝑡𝑝,2T by respectively fine-tuning Θ1

𝑏𝑟𝑖
, Θ2

𝑏𝑟𝑖
us-

ing L𝐷𝑖𝑠𝑡𝑖𝑙+L𝐶𝑜𝑀+L𝑃 on D𝑢
T .

10: For subtask combination:
11: Jointly optimize two models Θ𝑠𝑝 , Θ𝑡𝑝 on D𝑢

T using L𝑖
𝐾𝐷

.
12: return Θ𝑠𝑝 , Θ𝑡𝑝 .

4.3 Training and Inference
4.3.1 Training Process. As shown in Figure 1, DLBri is divided into
Progressive Contrastive Bridging and NER Task Decomposition-then-
Combination, and Algorithm 1 gives the detailed training procedure.

4.3.2 Inference. We finally use the trained models Θ𝑠𝑝 , Θ𝑡𝑝 in
subtask combination (Sec. 4.2.2) for inference. For each word 𝑥𝑖
in the sentence 𝑋 , span extraction model Θ𝑠𝑝 predicts a label in
C𝑠𝑝 = {B, I, O}, and then we can get a set of entities {𝑒1, 𝑒2, ...} of𝑋 .
As for the type label 𝑙𝑒

𝑖
of each entity 𝑒𝑖 , we use the label (belonging

to C𝑡𝑝 = {PER, LOC, ..., O}) of rightmost word in 𝑒𝑖 predicted by
type prediction model Θ𝑡𝑝 . So far, we can get the entity span and
its type. Specifically, 𝑒𝑖 is not regarded as an entity if its type label
is predicted as O.

5 EXPERIMENTS
In this section, we verify the following research questions:
• RQ1: Does our DLBri achieve the significant performances?
• RQ2: Does DLBri effectively narrow the language gap?
• RQ3: How is the effect of intermediate language text?
• RQ4: Is the cross-lingual transfer more advantageous in two
subtasks than in NER task with a combined tagging (e.g., B-LOC)?

5.1 Datasets and Evaluation
Following previous cross-lingual NERworks, we evaluate our DLBri
onCoNLL (i.e., CoNLL2002 [40], CoNLL2003 [41]) andWikiAnn [31]
benchmark datasets. CoNLL is comprised of English (EN), German,
Spanish and Dutch languages with four entity types {PER, LOC,
ORG, MISC}, and WikiAnn contains English and three non-western
languages: Arabic, Hindi and Chinese (ZH). For fair comparison
with previous methods, we also use English as source language and
the other languages as the target language in CoNLL and WikiAnn.
In cross-lingual NER, the labeled source-language training set and

unlabeled target-language training data are utilized, and we evalu-
ate the model on target-language test set in each language pair and
use the exact span matching based F1 score as evaluation metric
following prior studies. To further explore the effectiveness under
scenarios of large language discrepancy, we use LOWNER [26]
dataset including English and seven non-western languages, an-
notated with six entity types {PER, LOC, CORP, GRP, PROD, CW}.
English serves as source language and the other languages are
target. Other cross-lingual settings are identical to CoNLL and
WikiAnn. Detailed statistics of datasets and explanation of entity
types (e.g., CW) can be found in corresponding references.

5.2 Experimental Settings
5.2.1 Baselines. We compare ourmethodwith the following strong
cross-lingual NER baselines: (1)Wiki [42] introduced a language
independent method by building on cross-lingual wikification. (2)
WS [30] presented weakly supervised methods for cross-lingual
NER. (3) TMP [14] improved annotation projection by leverag-
ing machine translation in cross-lingual NER. (4) BERT-f [50]
directly applied mBERT to cross-lingual NER. (5) AdvCE [16] im-
proved upon mBERT’s cross-lingual performance with language-
adversarial training. (6) TSL [47] proposed a teacher-student net-
work for cross-lingual NER. (7) Unitrans [48] unified both model
and data transfer for cross-lingual NER by leveraging unlabeled
target data. (8) AdvPicker [4] designed an adversarial learning
framework to select less language-dependent target-language data
for training. (9)RIKD [22] developed the reinforced iterative knowl-
edge distillation method to explore unlabeled target-language data.
(10) TOF [59] proposed to transfer knowledge from three aspects:
domain, language and task in cross-lingual NER. (11)MTMT [21] in-
troduced the similarity metric model as an auxiliary task to improve
the cross-lingual NER performance. (12) ConNER [61] proposed a
consistency training framework which contained translation-based
and dropout-based consistency training respectively on unlabeled
target-language and labeled source-language data.

5.2.2 Implementation Details. Following prior competitive base-
lines, we use multilingual BERT-base [6] (mBERT) as encoders. All
hyper-parameters are tuned according to the results on dev set
with grid-search. For Step 1, batch size is 32 and maximum training
epoch is 3. For Step 2, batch size is 16 and maximum training epoch
is 50. The learning rate is 1e-5 and random number seed is 0 in
all steps of training procedure. The temperature 𝜏 is set to 0.1 by
tuning from {10, 1, 0.1, 0.15}. For confidence threshold 𝛿 , we use an
adaptive threshold instead of a fixed one by dynamically calculating
the mean and standard deviation of predicted maximum probabil-
ity value within a mini-batch, because the model confidence is
changed continuously during training. The hidden dimension 𝑑

is 768. Our method is implemented with Pytorch based on hug-
gingface Transformers [45], and is conducted on NVIDIA Tesla T4
GPU. The baseline results on CoNLL and WikiAnn datasets are all
reported by [21, 61]. For baseline results on LOWNER dataset, we
run the open-source official codes of baselines.

5.3 Experimental Results (RQ1)
The main results on test sets are reported in Table 2 and Table 3,
which highlight the best F1 score in bold and second highest in
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Table 2: F1 scores on CoNLL, transferring from English (EN)
to three western languages respectively.

Method German Spanish Dutch Average

Wiki [42] 48.12 60.55 61.56 56.74
WS [30] 58.50 65.10 65.40 63.00
TMP [14] 61.50 73.50 69.90 68.30
BERT-f [50] 69.56 74.96 77.57 74.03
AdvCE [16] 71.90 74.30 77.60 74.60
TSL [47] 73.16 76.75 80.44 76.78

Unitrans [48] 74.82 79.31 82.90 79.01
AdvPicker [4] 75.01 79.00 82.90 78.97
RIKD [22] 76.08 79.78 82.96 79.61
TOF [59] 76.57 80.35 82.79 79.90

MTMT [21] 76.80 81.82 83.41 80.68
ConNER [61] 77.14 80.50 83.23 80.29
DLBri (Ours) 78.43 83.19 84.43 82.02

Table 3: F1 scores on WikiAnn, transferring from English
(EN) to three non-western languages respectively. † notes we
run the official code for producing the results.

Method Arabic Hindi Chinese (ZH) Average

BERT-f [50] 42.30 67.60 52.90 54.27
TSL [47] 43.12 69.54 48.12 53.59

Unitrans [48]† 44.57 70.84 53.10 56.17
AdvPicker [4]† 49.16 73.26 53.32 58.58

RIKD [22] 45.96 70.28 50.40 55.55
MTMT [21] 52.77 70.76 52.26 58.60
ConNER [61] 59.62 74.49 39.17 57.76
DLBri (Ours) 65.07 77.51 59.67 67.42

underline. Table 2 shows the performances of transferring from
English to three western languages (German, Spanish, Dutch), while
Table 3 shows F1 scores on three non-western languages (Arabic,
Hindi, Chinese). We also report the average F1 score over three
western and non-western target languages respectively.

For western languages in Table 2, we observe that our method
consistently improves the previous state-of-the-art (SOTA) meth-
ods, because DLBri learns better cross-lingual entity-aware repre-
sentations and performs more effective transfer in two subtasks,
significantly bridging the cross-lingual gap from the representation
and labeling level. Compared with remarkable baselines (e.g., Uni-
trans [48], ConNER [61]) which also use the translation but ignore
the cross-lingual entity alignment and distinct transferability of
entity span and type, DLBri obtains the obvious superiority on all
language pairs. In Table 3, our method achieves an average absolute
increase of 8.82% compared to prior SOTA when transferring from
western English to non-western languages, which shows our signifi-
cant advantages of cross-lingual transfer between distant languages
because of more effective gap bridging methods in DLBri. Table 4
reaches the same conclusion on seven distant transfer pairs, which
powerfully shows the language transfer ability of DLBri. Compar-
ing Table 2 with Table 3, 4, we see that improvements of DLBri on

Table 4: F1 scores on LOWNER, transferring from English
(EN) to seven non-western languages respectively. We report
results of open-source baselines by running the official codes.

Language
Method BERT-f AdvPicker ConNER DLBri

(Ours)

Bangla 41.69 47.53 45.20 52.06
Farsi 48.11 51.60 51.22 55.07
Hindi 45.29 48.76 50.26 53.25
Korean 54.89 57.91 58.58 60.75
Russian 50.97 54.70 55.98 60.89
Turkish 62.28 64.05 65.43 69.15

Chinese (ZH) 57.15 63.19 65.04 69.14

western languages are less than non-western ones. The reason is
that language gap between English and other western languages is
not particularly large, and previous baselines have achieved promis-
ing performance on the transfer of similar languages, while DLBri
still further improves performances on all language pairs and has
greater advantages on distant language transfer.

5.3.1 Ablation Study. To verify the effect of each component, we
perform ablation study in Table 5. We observe that: (1) Without
Progressive Contrastive Bridging, we directly apply original mBERT
in Step 2 and F1 score separately drops by 1.84%, 3.38% on west-
ern and non-western languages. The reason is that the progressive
contrastive bridging effectively lessens the language discrepancy
especially on distant language pairs and facilitates cross-lingual
transfer. (2) Without high confidence (i.e., threshold 𝛿 = 0) and
low confidence (i.e., removing L𝑃 ), the performance respectively
reduces by 1.56%, 2.25% and 0.50%, 1.00%. That shows both high-
confidence and low-confidence predictions can benefit model learn-
ing by collaborative-matching and self-penalization. (3) Without
boundary consistency, we do not compute LT

𝑆𝐵𝐶
,LS

𝑆𝐵𝐶
, which

leads to 0.96%, 1.96% declines and confirms the effectiveness of ex-
plicit boundary information in span extraction subtask. (4) Without
Subtask Combination, we directly select the best of two student
models in SSL framework for final results. The F1 scores drop by
1.66% and 1.84% on western and non-western languages. Mean-
while, we only remove subtask interaction layer, F1 scores decrease
by 0.95% and 1.12%. That shows both knowledge distillation and
subtask interaction are essential and effective in decomposed task.

5.3.2 Complexity Analysis. To conduct the analyses of complexity
in Table 6, we run official codes of baselines under the same batch
size and GPU for reporting results. MTMT [21] has not released
codes, so we only estimate the number of parameters according to
the paper. (1) For #Param, more model parameters may promote
performance, and we calculate the number of parameters directly
used for NER task prediction. Table 6 shows the parameter quantity
of DLBri is close to or even less than some competitive baselines,
which demonstrates our DLBri does not mainly gain from more
parameters but more effective cross-lingual gap bridging strategies.
(2) For #Training Time, we compute the spent time of processing
per mini-batch data during training. Some methods (e.g., Unitrans,
AdvPicker and DLBri) include multiple training steps, we accumu-
late the time of each step. (3) For #Inference Speed, we calculate the
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Table 5: Ablation study on dev sets. Scores are averaged over
3 western and non-western languages in CoNLL, WikiAnn.

Method Dev F1
western non-western

DLBri (Ours) 84.19 68.77

w/o Progressive Contrastive Bridging 82.35 65.39
w/o high confidence 82.63 66.52
w/o low confidence 83.69 67.77
w/o boundary consistency 83.23 66.81
w/o Subtask Combination 82.53 66.93
w/o subtask interaction layer 83.24 67.65

Table 6: Analysis on the number of parameters and efficiency.
s/B is the spent seconds per batch, while B/s is contrary.

Method Unitrans AdvPicker MTMT ConNER DLBri
(Ours)

#Param 177.86M 177.27M ∼356M 559.91M 359.26M
#Training Time 5.56 s/B 3.91 s/B – 1.26 s/B 5.42 s/B
#Inference Speed 3.06 B/s 3.47 B/s – 2.71 B/s 2.35 B/s

Figure 2: t-SNE visualization on two language pairs with
BERT-f and DLBri. Different colors mark distinct languages
and various entity types are marked with different shapes.

number of processed batches per second during test. The running
efficiency of DLBri is not the best among compared strong baselines,
but their efficiencies are still of the same order of magnitude. The
reason may be that span extraction and type prediction subtask
are trained and tested in serial on a GPU server. The efficiency
actually can be improved by parallel processing. Comprehensively,
considering the significant performance advantage of our DLBri,
the running efficiency is reasonable and acceptable.

5.4 Experimental Analyses
5.4.1 Effectiveness of Gap Bridging (RQ2). To check if our DLBri
effectively narrows the language gap and improves cross-lingual
NER performance, Figure 2 visualizes the last hidden layer features
of three languages on dev sets in BERT-f and DLBri when respec-
tively transferring from English to German and Arabic. Each point
in figure indicates an entity, which is an average features of all
tokens in the entity and further averaged over two subtasks in
DLBri. Red, blue and green color separately mark English, German

w/o Step 1 Step 1 (pair1) Step 1 (pair1/2) Step 1 (pair1/2/3)

Western Target Language

Non-western Target Language

Source-to-Target Oriented Pair

Figure 3: F1 score with the gradual addition of sentence pairs.

and Arabic. Different shapes of points mark distinct entity types.
Compared with BERT-f that fine-tunes mBERT on source-language
training data and directly tests on target language, our DLBri pulls
the source and target languages closer, and entities with the same
type are clustered together more effectively despite of languages in
Figure 2 (b), (d). As DLBri also uses mBERT as backbone, this shows
that our method significantly bridges the language gap with bet-
ter cross-lingual entity-aware representations and more effective
transfer in subtasks, compared to BERT-f only based on mBERT.

5.4.2 Analysis on Source-to-Target Oriented Sentence Pair (RQ3).
To show the effect of intermediate language text, we gradually per-
form contrastive bridging on different pairs and report the influence
on final F1 score of DLBri on six target-language test data in Figure 3.
Our method adopts two mBERT encoders in Step 1 (progressive
contrastive bridging) and we also conduct experiments with single
mBERT for encoding the sentence pair. We can observe that two
are better than one, because two encoders respectively preserve
source and target oriented information, and provide better bridging
effect and heterogeneous information for semi-supervised learning
in subtask transfer. Meanwhile, performance increases roughly as
we progressively perform the contrastive bridging on new sentence
𝑝𝑎𝑖𝑟𝑖 (𝑖 ∈ {1, 2, 3}), which confirms the effectiveness and necessity
of source-to-target oriented sentence pairs. Especially, our DLBri
gains more from 𝑝𝑎𝑖𝑟2 with source-oriented and target-oriented
intermediate sentences, as two intermediate texts have distinct lan-
guage styles and would better serve as the intermediate languages.
We also perform contrastive bridging only on the pair comprised
of source and target language sentences, which respectively leads
to 1.63% and 3.86% declines on CoNLL and WikiAnn test sets, and
shows the effect of source-to-target oriented sentence pairs.

5.4.3 Effectiveness of Decomposing NER Task (RQ4). To verify the
significant superiority of transferring in subtasks, we respectively
conduct the cross-lingual transfer based on the combined tagging
(e.g., B-LOC) and the decomposed subtasks in Table 8. BERT-f𝑑𝑒𝑐𝑜𝑚
means BERT-f is decomposed into two subtasks, and DLBri𝑐𝑡𝑎𝑔
means we perform Step 2 with the combined tagging instead of
decomposing NER task in DLBri. We see that BERT-f is obviously
improved by decomposition (BERT-f𝑑𝑒𝑐𝑜𝑚), and our DLBri also
outperforms its variant DLBri𝑐𝑡𝑎𝑔 significantly. The reason is that
entity span and type have different transfer difficulties, and transfer
in subtasks can model the respective transferability, promoting
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Table 7: F1 scores of two subtasks on 13 language pairs. Source𝑓 𝑡 (Target𝑓 𝑡 ) means fine-tuning mBERT on source (target)
language training set and both test on target language. Comparing Δ in two subtasks, higher is marked in red and lower is blue.

Δ=Target𝑓 𝑡 – Source𝑓 𝑡 CoNLL (western) WikiAnn (non-western) LOWNER (non-western)
Subtask German Spanish Dutch Arabic Hindi ZH Bangla Farsi Hindi Korean Russian Turkish ZH

Span
Extraction

Source𝑓 𝑡 84.59 86.47 93.57 63.03 81.09 59.54 62.41 56.89 63.15 62.48 65.39 72.38 70.78
Target𝑓 𝑡 89.05 95.54 97.42 95.01 95.32 87.57 83.71 79.32 80.18 85.44 79.05 85.45 90.15

Δ 4.46 9.07 3.85 31.98 14.23 28.03 21.30 22.43 17.03 22.96 13.66 13.07 19.37

Type
Prediction

Source𝑓 𝑡 82.50 84.69 83.36 82.91 87.29 86.33 66.37 80.63 68.50 81.32 82.33 82.47 80.04
Target𝑓 𝑡 89.10 92.19 93.58 93.62 95.28 91.05 81.24 89.10 80.87 90.96 86.52 90.65 91.01

Δ 6.60 7.50 10.22 10.71 7.99 4.72 14.87 8.47 12.37 9.64 4.19 8.18 10.97

Table 8: F1 scores of variants to validate task decomposition,
𝑑𝑒𝑐𝑜𝑚 is decomposed, 𝑐𝑡𝑎𝑔 is combined tagging, 𝑠ℎ𝑎 is shared.

Language
Method BERT-f BERT-f𝑑𝑒𝑐𝑜𝑚 DLBri𝑐𝑡𝑎𝑔 DLBri𝑠ℎ𝑎

DLBri
(Ours)

German 69.56 71.29 76.78 77.41 78.43
Spanish 74.96 76.18 82.08 81.92 83.19
Dutch 77.57 78.92 83.53 84.10 84.43

Arabic 42.30 48.76 57.92 60.75 65.07
Hindi 67.60 69.84 74.96 75.40 77.51
ZH 52.90 53.76 57.51 57.90 59.67

the sufficient transfer. We also share the mBERT encoder but with
respective classification head (DLBri𝑠ℎ𝑎) between two subtasks,
causing performance decline, which shows the necessity of separate
encoding in two subtasks. This is also why we perform completely
independent transfer in subtasks and then make subtask interaction.

5.4.4 Different Transfer Difficulties of Subtasks. As shown in Ta-
ble 7 (detailed version of Table 1), to confirm the discrepant transfer
difficulties of span extraction and type prediction subtask, we fine-
tunemBERT for each subtask on labeled source-language (Source𝑓 𝑡 )
and target-language (Target𝑓 𝑡 ) training data respectively, and both
predict on target-language test data. Span extraction subtask evalu-
ates the predicted entity spans and Type prediction evaluates the
predicted types of ground-truth entity spans. As the performance
degradation of Source𝑓 𝑡 compared with Target𝑓 𝑡 results from the
language discrepancy, the larger difference Δ implies the greater
cross-lingual gap and more difficult transfer. Table 7 shows that
span extraction subtask has the higher transfer difficulty than type
prediction when transferring from English to non-western lan-
guages. The reason may be that there are significant differences
in syntax and grammar between distant languages, which leads to
the poor boundary detection in span extraction. Meanwhile, we
see that type information transfer is less affected by language dis-
crepancy, because type prediction relies more on token semantics
which may benefit from multilingual BERT (mBERT). Therefore,
decomposing NER task is reasonable, which fully considers the
transfer characteristics of entity span and type information in cor-
responding subtasks and effectively reduces the cross-lingual gap.
Overall, Table 7 shows that decomposing the task for cross-lingual

Table 9: Average F1 scores on CoNLL, WikiAnn test set under
different SSL frameworks. DLBri★marks using SSL ofMTMT.

Dataset
Method

RIKD [22] MTMT [21] DLBri★ DLBri
(Ours)

CoNLL (Western) 79.61 80.68 81.05 82.02
WikiAnn (Non-western) 55.55 58.60 65.33 67.42

NER is largely limited by span extraction, especially on distant
language pairs (English to non-western).

5.4.5 Impact of Semi-supervised Learning (SSL) Framework. To ex-
plore the effect of different SSL frameworks in Table 9, we adopt
the same SSL (i.e., semi-supervised knowledge distillation) in DLBri
as MTMT [21], notated as DLBri★. We see that DLBri★ still sig-
nificantly outperforms MTMT and RIKD which exploits iterative
knowledge distillation especially on distant language pairs. This
demonstrates that the advantages of our DLBri do not mainly come
from confidence-based SSL but representation-level and labeling-
level gap bridging strategies. Comparing DLBri★ with DLBri, we
observe that devising better SSL framework can also further im-
prove cross-lingual NER performance in the future.

6 CONCLUSION AND FUTUREWORK
This paper develops DLBri to bridge cross-lingual gap from the per-
spective of representation and labeling. Concretely, we devise the
progressive contrastive bridging for learning better cross-lingual
entity-aware representations. As for labeling, we decompose NER
task into two subtasks to favour more sufficient transfer with the
consideration of distinct transfer characteristics of entity span and
type. These two perspectives are performed under the SSL frame-
work. Extensive experiments confirm the rationality and effective-
ness of our method.
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