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Cross-domain Named Entity Recognition (NER) transfers knowledge learned from a rich-resource source

domain to improve the learning in a low-resource target domain. Most existing works are designed based

on the sequence labeling framework, defining entity detection and type prediction as a monolithic process.

However, they typically ignore the discrepant transferability of these two sub-tasks: the former locating

spans corresponding to entities is largely domain-robust, whereas the latter owns distinct entity types across

domains. Combining them into an entangled learning problem may contribute to the complexity of domain

transfer. In this work, we propose the novel divide-and-transfer paradigm in which different sub-tasks are

learned using separate functional modules for respective cross-domain transfer. To demonstrate the effec-

tiveness of divide-and-transfer, we concretely implement two NER frameworks by applying this paradigm

with different cross-domain transfer strategies. Experimental results on 10 different domain pairs show the

notable superiority of our proposed frameworks. Experimental analyses indicate that significant advantages

of the divide-and-transfer paradigm over prior monolithic ones originate from its better performance on

low-resource data and a much greater transferability. It gives us a new insight into cross-domain NER. Our

code is available on GitHub.1

CCS Concepts: • Computing methodologies→ Information extraction; Transfer learning;

1https://github.com/AIRobotZhang/Divide-and-Transfer
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1 INTRODUCTION

Named Entity Recognition (NER) aims to detect entity spans and classify them into pre-defined
categories (e.g., location), which has achieved notable performance using a large amount of high-
quality labeled data. Yet performance tends to drop drastically when lacking sufficient annotated
data. Cross-domain NER solves this issue by transferring knowledge from the high-resource to
low-resource domains, attracting increasing research interest.
End-to-end NER sequence labeling has always been a popular paradigm with compositional

tagging schemes (e.g., B-LOC), as shown in Figure 1(a). Prior cross-domain NER methods also
follow this framework and introduce corresponding transfer strategies, such as parameter transfer
[21, 35] and domain mapping [3, 19]. Note that the sequence labeling framework is monolithic, as
it needs to recognize entity span and classify entity category concurrently. So cross-domain NER
under this monolithic framework needs to transfer two kinds of coupled information (entity span
and type) simultaneously. However, these two information have different cross-domain transfer
difficulties: the domain gap of being entity span is small due to the same label space across
domains, whereas the entity type set is distinct across domains, which causes a great obstacle for
transfer, and this hybrid transfer seems to be challenging. Thus, this article focuses on disentan-
gling the coupled information by dividing the NER task into entity detection and type prediction
sub-tasks (see Figure 1(b) and (c)), and devises corresponding transfer strategies according to the
cross-domain barrier in each sub-task for more effective transfer (divide-and-transfer). Finally,
outputs from these two sub-tasks are integrated as the final result of the original NER task.
Methodologically, we perform the cross-domain transfer in these two sub-tasks, respectively,

and propose two instantiated frameworks following by Divide-and-Transfer paradigm, namely
DTrans-SMix and DTrans-MPrompt.
DTrans-SMix is our first attempt in which we adopt parameter Sharing andMixup strategies for

cross-domain transfer. Concretely, we use two individual encoders to extract distinct contextual
features from entity detection and type prediction sub-tasks separately. The corresponding cross-
domain transfer strategies for two sub-tasks are as follows. First, the entity detection sub-task is
domain-robust, which has a common label set across domains and seeks to locate entities. For
simplicity, we share all model parameters (i.e., Embedding, Encoding, and Output layer) to jointly
train between the source and target domain for transfer. Second, the type prediction sub-task aims
to classify the located entity spans with pre-defined entity categories. However, category sets are
different across domains, leaving classification heads in output layers unshareable, which leads to
the obvious domain discrepancy and transfer barrier. To tackle this challenge, an intermediate aug-
mented domain is constructed by a fixed ratio-based mixup on the top of encoder representations
between source and target domain, then we send intermediate features into a new classification
head to minimize the domain gap.
DTrans-MPrompt serves as another instantiation of the proposed divide-and-transfer paradigm

in this article, which performs cross-domain transfer with a Multi-view decoding strategy and
Prompt tuning. Detailed transfer strategies in two sub-tasks are as follows.
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Fig. 1. (a) End-to-end NER sequence labeling framework. (b) Entity detection and type prediction sub-task.

(c) Previousmethods try to transfer directly without any consideration of coupled information. Our proposed

method disentangles the coupled entity span and type information.

Fig. 2. Various tagging schemes in the entity detection sub-task.

Entity Detection. In Entity detectionwhich owns the same label space across domains, we propose
a multi-view decoding strategy with three tagging schemes (shown in Figure 2) during training,
which can capture more domain-invariant features about what is an entity. These tagging schemes
can detect entity spans from various perspectives (e.g., entity boundary, inside): “BIO” considers
the information of the whole entity span comprehensively, “Start and End” (SE) exploits the entity
boundary explicitly, and “Tie or Break” (TB)models the connection information inside an entity. By
following our multi-view decoding strategy, more shared features between the source and target
domain can be learned from different views for more effective transfer.
Type Prediction. Type prediction is more difficult to transfer than Entity detection since the source

and target domain have different entity categories (i.e., different label spaces in classification) as
discussed previously. Prompt-tuning [2, 33] aims to bridge the gap between pre-training tasks and
various downstream tasks in the natural language processing (NLP) community. Inspired by
this, we adapt the prompt-tuning strategy to the cross-domain transfer for bridging the gap across
domains in this sub-task. Concretely, prompt-tuning maintains the word prediction paradigm of
the pre-trained language model (PLM) to predict a class-related pivot word (or label word)
in the PLM vocabulary. Under this paradigm, label words for both the source and target domain
are subsets of the PLM vocabulary which allows our model to exploit label correlations across
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domains, thus reducing the domain gap and type discrepancy. Additionally, the task prediction
form is unified for contributing to the transferability between the source and target domain.
In a nutshell, the major contributions of this work are summarized as follows:

— Different from previous monolithic transfer under the sequence labeling framework, we
propose the first divide-and-transfer paradigm to disentangle the entity span and type in-
formation for more effective transfer in each sub-task, which points out a new research idea
for cross-domain NER. The divide-and-transfer paradigm originates from our conference
version [65]. This article further clarifies and follows this paradigm to propose a new way
of implementing it, developing more effective cross-domain strategies and extending the
divide-and-transfer paradigm into diverse scenarios.

—We devise two specific cross-domain NER frameworks—DTrans-SMix and DTrans-
MPrompt—by following the proposed divide-and-transfer paradigm. For example, we
develop the multi-view decoding strategy for effective knowledge transfer in the entity

detection sub-task, and first adapt the prompt-tuning to cross-domain transfer for handling
the transfer obstacle in the type prediction sub-task.

—We evaluate two frameworks on 10 different domain pairs and verify their effectiveness
(about average 5.27% and 8.44% absolute F1 score increase), which shows the great potential
of our divide-and-transfer paradigm. Further experiments confirm the significant superior-
ity of the proposed paradigm in the extremely low-resource scenario. Using only 10% data
in the DTrans-MPrompt framework can achieve the comparable performance as using the
full target domain data in previous SOTAs.

This article is a significant extension of our conference version published in SIGIR ’22 [65]. The
major extensions are as follows:

—We formally summarize the divide-and-transfer paradigm from our previously published
work DTrans-SMix [65]. The general paradigm further enriches the cross-domain NER com-
munity. Notably, this article extends the divide-and-transfer paradigm to diverse scenarios,
including low-resource, few-shot, and zero-shot cross-domain scenarios with different label
spaces across domains, whereas our previous method DTrans-SMix is limited by the zero-
shot scenario.

— Following this paradigm, we devise a novel framework DTrans-MPrompt where cross-
domain transfer strategies for entity span and type information are more precise and ef-
fective than our original work, taking the performance to a new height—for example, the
multi-view decoding strategy instead of simple parameter sharing for entity span transfer,
and the unified task prediction form based on prompt-tuning instead of intermediate domain
augmentation for entity type transfer.

—We also conduct more in-depth experiments to demonstrate that the proposed divide-
and-transfer paradigm shows great generalization ability and can be well extended with
tailor-designed transfer strategies in two sub-tasks for cross-domain NER, such as more
cross-domain NER baselines and benchmark datasets. Specifically, we further explore
the effectiveness of our DTrans-MPrompt proposed in this article under the few-shot
and zero-shot cross-domain scenarios, and extend the divide-and-transfer paradigm to
cross-domain slot filling, which is also typically a sequence labeling task.

The rest of the article is organized as follows. Section 2 briefly reviews existing research re-
lated to our work. We introduce the divide-and-transfer paradigm and newly proposed DTrans-
MPrompt in Section 3. Section 4 shows the experimental settings and results to illustrate the ef-
fectiveness of the divide-and-transfer paradigm together with further experimental analyses. We
conclude our research and present our future work in Section 5.
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2 RELATEDWORK

2.1 Cross-Domain NER

The end-to-end sequence labeling framework [8, 25] is a popular paradigm that assigns each
token a compositional tag (e.g., B-ORG) in NER. Most existing cross-domain NER methods are
based on this framework for transfer learning, which can be categorized into domain map-

ping [22, 31, 39, 53, 59, 63] and parameter transfer [34, 51, 61, 68]. Domain mapping methods aim
to map the features from one domain to another. Jia et al. [19] used the cross-domain language

model (LM) as a bridge to map from the source to the target domain by designing a novel param-
eter generation network. Chen et al. [3] studied data augmentation for the cross-domain NER task
by projecting data from high-resource domains into low-resource domains. Ma et al. [37] modeled
the subword distribution between the source and target domain by solving an optimal transport
problem. Zheng et al. [66] built label graphs in both source and target label spaces and performed
the graph matching operation for domain mapping. Different from domain mapping approaches,
parameter transfer methods tend to share model parameters between the source and target do-
main. Jia and Zhang [21] proposed a multi-cell compositional LSTM structure on the top of the
BERT encoder for multi-task learning, making the cross-domain transfer perform at the entity
type level. Liu et al. [35] developed the domain-adaptive pre-training (DAPT) and encoder-shared
method for the cross-domain NER task.
Few-shot NER involves learning unseen classes from very few labeled examples, where some

few-shot methods also evaluate their cross-domain ability [7, 38, 60]. For instance, Yang and Kati-
yar [60] proposedNNShot and StructShot with a compositional tagging scheme (e.g., B-LOC) based
on the nearest neighbor classifier. These approaches aim to generalize models from very few ex-
amples (K-shot).
Most methods are based on a sequence labeling paradigm (e.g., B-LOC), which is a compositional

task and requires onemodel to decide entity span and category simultaneously. Unlike theseworks,
we break down the original NER task into two sub-tasks (entity detection and type prediction) and
verify its superiority in cross-domain transfer.

2.2 Task Decomposition

For some existing NLP and computer vision tasks, decomposing the compositional task into single
sub-tasks is very common, which aims to solve issues existing in compositional tasks [10, 48]. For
example, in nested NER, Tan et al. [49] proposed a boundary-enhanced neural span classification
model that first generated the candidate nested spans and then classified them. They focused on rec-
ognizing nested entities by decomposing the NER task. To recognize long entities effectively, Shen
et al. [47] divided the NER task and designed a two-stage entity identifier, which first located the
long entities by boundary regression, then labeled the span with the corresponding entity cate-
gories. In joint extraction of entities and relations, Yu et al. [62] decomposed the joint extraction
task into head-entity extraction, and tail-entity and relation extraction to reduce the redundant
entity pairs and consider the important inner structure in the process of extracting entities and re-
lations. Wang et al. [52] decomposed the task for learning from the natural language descriptions
of entity classes sufficiently. In object detection, Xie et al. [55] divided the task into two stages and
proposed an oriented region proposal network for reducing the expensive computation during
generating proposals.
We decompose the NER task into two sub-tasks (entity detection and type prediction) for disen-

tangling the hybrid transfer under the monolithic sequence labeling framework. By transferring in
each sub-task with reasonable cross-domain strategies, more information can be transferred from
the source to the target. To the best of our knowledge, there is currently no specific research for
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exploring the efficacy of dividing the task in cross-domain NER. Our work mainly inspires a new
perspective on cross-domain NER, which is completely different from the existingwork introduced
earlier.

2.3 Prompt Learning

A series of PLMs make NLP tasks achieve promising performance, such as BERT [8], BART [27],
T5 [43], and GPT [42]. PLMs only need to be fine-tuned and show their effectiveness on down-
stream tasks, like text classification [12], NER [20], and question answering [1]. However, the op-
timization objective gap between pre-training and fine-tuning limits the utilization of PLM model
capabilities on downstream tasks [9, 17, 33]. In this connection, prompt learning is proposed to
unleash the knowledge contained in PLMs [2, 5, 11].

Prompt learning formalizes the downstream task as a cloze-style objective with a prompt context

and verbalizer similar to those pre-training objectives [9], narrowing the gap between pre-training
and fine-tuning. Stemming from GPT-3 [2], which achieves impressive performance on down-
stream tasks by prompt-tuning, massive prompt learning based methods are arising by focusing
on designing hand-crafted prompts. Gao et al. [11] treated the downstream task as a masked
language modeling problem given task-specific prompt, where the model directly generated a
label word in PLM vocabulary for task prediction. Schick and Schütze [45] utilized natural lan-
guage patterns to reformulate input sentences into cloze-style phrases to alleviate labor-intensive
prompt engineering. Li and Liang [29] proposed prefix-tuning, which kept PLM parameters
frozen and instead optimizes a sequence of continuous task-specific vectors as prompts rather
than discrete language words. Recently, extensive studies show that large language models

(LLMs) can be prompted to perform various NLP tasks, given text instruction and some examples
of the task as input [41]. The LLMs represented by ChatGPT2 have attracted widespread attention
in both academia and industry [14, 28, 67], profoundly influencing the transformation of research
paradigms.
We adapt the prompt technique to cross-domain scenarios which effectively bridges the domain

gap by the unified task prediction form, especially for distinct label spaces across domains. LLMs
achieve impressive performance on a series of NLP tasks, and their ability to information extraction
(e.g., NER) under cross-domain transfer scenarios needs further evaluation and exploration in the
future.

3 METHODOLOGY

3.1 Problem Definition

Given a sentence X=<w1,w2, . . . ,wn>, wi is a word (token) and n is the length of the sentence.
An entity is a span of X with a category: e = {(wstar t ,wstar t+1, . . . ,wend ), l

e }, where le ∈ C is an
entity type (category) (e.g., person, location). C is a set of entity types in a specific domain. NER
focuses on finding entity e in the sentence. For cross-domain NER that transfers information from
the source domain to the target, there are NS labeled sentences in the source domain S, and its
entity type set is denoted as CS . The target domain T has NT labeled sentences. The entity type
set in T is CT .
In this article, we focus on transferring from a high-resource domain (S) to a low-resource

domain (T ), and there are different entity type spaces between the source and target domain—that
is, NT � NS and CS � CT . The cross-domain experiment in this article is more challenging
and meets the real-world cross-domain scenario. Specifically, we also conduct cross-domain
experiments under zero-shot scenarios where NT is zero.

2Launched by OpenAI in November 2022 (https://chat.openai.com/chat)
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Fig. 3. Overview of the divide-and-transfer paradigm. The NER task is divided into sub-tasks (entity detec-

tion and type prediction) using separate functional modules with corresponding cross-domain strategies.

3.2 Divide-and-Transfer Paradigm

Owing to easy implementation and promising performance, the sequence labeling framework has
always been a popular paradigm where each token is assigned a compositional label (e.g., B-PER).
But this paradigm needs one model to decide the entity span and type concurrently, and trans-
ferring these two kinds of information under the monolithic framework is challenging because
of their discrepant transferability. Thus, we divide the NER task into two sub-tasks (Entity Detec-

tion, Type Prediction) to disentangle the transferred information for more effective transfer in each
sub-task (Figure 3).
After being divided into Entity Detection and Type Prediction sub-tasks, the most critical step is

to devise the corresponding cross-domain transfer strategies in each sub-task for contributing to
the transfer from the source to the target domain. As shown in Figure 3, what we need to do is
to propose cross-domain strategies and then transfer entity span information from the source to
the target in the entity detection sub-task, which assists in detecting entity spans on the target
domain. Similarly, the type prediction sub-task also requires tailor-designed modules to improve
the prediction of the target entity type. Additionally, the cross-domain barriers are different for the
transfer of entity span and type information in two individual sub-tasks. Comparedwith the hybrid
transfer of two kinds of entity information under a monolithic paradigm (e.g., sequence labeling
based), there are more possibilities for transfer strategy combinations and greater improvement in
divide-and-transfer paradigm based cross-domain NER due to specific sub-task transfer strategies.
For example, the divide-and-transfer paradigm based cross-domain NER frameworksDTrans-SMix

and DTrans-MPrompt separately devise the parameter sharing and multi-view decoding strategies
for entity detection,mixup based intermediate domain augmentation, and prompt-tuning strategies
for the type prediction sub-task.
Last but not least, the divide-and-transfer paradigm needs to coordinate the relationship be-

tween two sub-tasks to obtain the final NER result (i.e., entity span and type). For instance,
DTrans-SMix and DTrans-MPrompt respectively propose the modular interaction mechanism and
re-detecting strategy for the explicit interaction of two sub-tasks.

Formally, given a sentence X S = < wS1 ,w
S
2 ,w

S
3 ,w

S
4 , . . . ,w

S
l−2
,wS

l−1
,wS

l
> from the source

domain and X T = < wT1 ,w
T
2 ,w

T
3 , . . . ,w

T
m−1,w

T
m > from the target domain, the divide-and-

transfer paradigm first decomposes the NER task into Entity Detection (ED) and Type Prediction
(TP) sub-tasks, then devises corresponding cross-domain transfer strategies for each sub-task to
transfer source-domain information. Concretely, the divide-and-transfer paradigm needs to learn
an entity detection model fΘED

(X S,X T ;ΦED ) and a type prediction model fΘT P (X
S,X T ;ΦT P )

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 137. Publication date: May 2024.
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Fig. 4. Overview of DTrans-MPrompt, where the transfer is performed in two sub-tasks (entity detection

and type prediction) separately.

based on cross-domain transfer strategies ΦED , ΦT P with source and target domain data X S , X T

in the corresponding sub-tasks. Specifically, the interaction strategy ϒ is developed to associate
two sub-tasks for final NER results.

3.3 DTrans-MPrompt Cross-Domain Framework

DTrans-SMix in the conference paper [65] devises simple parameter sharing for entity span trans-
fer in the entity detection sub-task and intermediate domain augmentation for entity type transfer
in the type prediction sub-task. Instead, DTrans-MPrompt is composed of themulti-view decoding

strategy for the entity detection sub-task and the prompt-tuning based label space unification for
type prediction. Overall, they both follow the divide-and-transfer paradigm, and DTrans-MPrompt
proposed in this article possesses more precise and effective transfer strategies in sub-tasks. Addi-
tionally, DTrans-MPrompt can work under zero-shot cross-domain scenarios with different label
spaces across domains, which further extends the divide-and-transfer paradigm to diverse scenar-
ios. Full details of DTrans-SMix can be found in our previously published version [65]. Next, we
detail the DTrans-MPrompt framework that abides by the divide-and-transfer paradigm.

3.3.1 Entity Detection Sub-Task. Given a sentence X = <w1,w2, . . . ,wn>, this sub-task aims
to locate entity spans in the text. We use BERT as the backbone for hidden representations H =
<h1, h2, . . . , hn> ∈ R

n×d :

H = BERT(X ), (1)

where n is the length of a sentence and d is the dimensions of last hidden layer in BERT.

Multi-View Decoding Strategy. To find more similarities between the source and target domain,
we propose a multi-view decoding strategy where three kinds of tagging schemes (i.e., “BIO,” “Start
and End,” “Tie or Break”) are utilized from different perspectives. Three kinds of tagging schemes
capture features about what an entity is from different perspectives. For example, “Start and End”
focuses on the entity boundary, and “Tie or Break” lays emphasis on the entity inside, which
contributes to more features transfer from the source domain to the target. Then more domain-
invariant features can be captured in different granularities.

“BIO” Tagging Scheme. This scheme detects entity spans with global contextual information
at the sentence level. We tag the beginning token of an entity as ‘‘B” and other tokens of the
same entity as ‘‘I.” Non-entity is tagged as ‘‘O.” As shown in Figure 4, we can get the hidden

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 137. Publication date: May 2024.
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representation hi for each tokenwi (Equation (1)). Then hi is passed into a Fully Connected Network
(FC) to get the label probability distribution forwi .

“Start and End” Tagging Scheme. This scheme explicitly models the entity boundary informa-
tion that effectively perceives the start and end positions of entities. Similarly, hidden representa-
tion hi is fed to two binary classifiers (FC) to predict the probability of each tokenwi being a start
or end position. The binary tag (0/1) indicates whether wi corresponds to a start or end position,
as shown in Figure 2.

“Tie or Break” Tagging Scheme. This scheme encodes the connection between adjacent tokens
within an entity. As shown in Figure 2, T (Tie) indicates two adjacent tokens belong to the same
entity, and B (Break) is for otherwise. Concretely, given the hidden representations hi−1, hi of two
adjacent tokens, they are added to get the token interaction representation. Then a classifier is
constructed to predict the probability of each token pair being tied as follows:

p (tk |wi−1;wi ) =
exp

{
ŵ�
k
(hi−1 + hi ) + b̂k

}
∑

tj ∈R exp
{
ŵ�j (hi−1 + hi ) + b̂j

} , (2)

where [ŵk ; b̂k ] are parameters specific to the k-th tagging class tk . tk ∈ R and R = {“Tie”, “Break”}.
The optimization objectives of the preceding three tagging schemes all adopt the cross-entropy

loss function, notated as LBIO, LSE, and LTB (corresponding to “BIO,” “Start and End,” and “T ie or
Break”).

Mean Teaching. The annotation sparsity on the target domain cannot be underestimated, which
tends to cause the overfitting problem. To alleviate this issue, we apply exponential moving average
(EMA) [23, 50, 64] to gradually accumulate the parameters θ of the original entity detection model

as the teacher model’s parameters θ̃ . The formula is as follows:

θ̃t ← αθ̃t−1 + (1 − α)θt , (3)

where α denotes the smoothing coefficient and t means the t-th iteration. Before the first iteration,

θ̃0 = θ0, which are initialized with the same parameters (e.g., BERT).
The teacher model can be viewed as the ensemble of original models in different training iter-

ations. As α is generally assigned a value close to 1 (e.g., 0.995), the teacher model is more stable,
which prevents the model from overfitting limited target data. Thus, we distill the logit outputs p̃i
of the teacher into original model for robust training (pi is the logit outputs of original model):

Ldis = Ei
[
‖pi − p̃i ‖

2
]
. (4)

3.3.2 Type Prediction Sub-Task. Given a candidate entity span, the type prediction sub-task
focuses on classifying it into pre-defined entity categories.

Prompt-Tuning-Based Label Space Unification. As the source and target domain have distinct
entity categories, the classification head remains different across domains in the standard fine-
tuning process, which causes an obvious gap, whereas prompt-tuning can reformulate the fine-
tuning classification task as a PLM task (masked languagemodel (MLM) [8]), which predicts the
label word in the PLM vocabularyV . Therefore, the label spaces of the source and target domain
are both the subsets of PLM vocabulary, which allows our model to exploit label correlations across
domains and narrow down the domain gap. Under this paradigm, what is learned is the ability to
select label words from the PLM’s vocabulary based on context, and no new model parameters are
introduced for the target domain, promoting the transfer of this ability from the source domain to
the target domain. Additionally, no new parameters are introduced in prompt-tuning, so the model

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 137. Publication date: May 2024.
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Fig. 5. Fine-tuning vs. Prompt-tuning.

can adapt to the cross-domain task in the annotation sparsity scenario. Then we do not develop
extra strategies for low-resource target domains in this sub-task.
As shown in Figure 4, the input of prompt-tuning is organized as X = “X . (wstar t , . . . ,wend ) is

the [MASK] entity.” andX is the sentence where the entity span es = (wstar t , . . . ,wend ) is located.

For each entity category le ∈ C (e.g., LOC), we define a label word ve ∈ V (e.g., location). Then X
is input into PLM to predict the missing label word at the masked position. Thus, the classification
problem is converted into a masked language modeling problem:

p(le ∈ C|X ; es ) = p([MASK] = ve ∈ V|X). (5)

The training objective is a cross-entropy loss, LPT.
Figure 5 shows the fine-tuning and prompt-tuning paradigms in the Type Prediction sub-task.

Fine-tuning with an extra classification head has been the typical solution for adapting PLM (e.g.,
BERT) to downstream tasks. As shown in Figure 5(a), given the entity span “New York” and its
context “[CLS] Welcome to New York [SEP],” fine-tuning adds a new classification head on the
top of BERT encoder for classifying its entity category LOC. Prompt-tuning focuses on probing
knowledge of PLMwith the prompt for downstream tasks. As shown in Figure 5(b), we need to con-
struct the input “[CLS]Welcome to New York . New York is the[MASK] entity . [SEP]” for classi-

fying the category of “New York.” Concretely, PLM with its MLM head can compute a probability
distribution over the vocabulary at themasked position. Theword “location” with the highest prob-
ability can be mapped into its corresponding entity category “LOC” (each category corresponds to
a word in the PLM vocabulary). Therefore, despite of the source and target domain, prompt-tuning
is to predict a label word in the PLM vocabulary, which effectively lessens the domain gap.

Re-Detecting Strategy. In general, the type prediction model (prompt-tuning) can be trained with
the ground-truth entity spans according to teacher forcing [24]. However, the entity spans are
generated by the entity detection sub-task in the inference phase, which will cause inconsistency
between the training and inference phase. Therefore, we add a new label “O” in the type prediction
sub-task to filter the false-positive entity spans. In the training phase, we also use the results of
the entity detection sub-task, and the entity span is labeled as “O” when it is a false-positive span.
But the false-positive entity span may be highly overlapping with the ground-truth one, which
will not make it be filtered out during inference. Thus, we add low-threshold filtering as

E = {es |maxp([MASK] = ve ∈ V|X) ≥ δ }. (6)

That is to say, low-confidence candidate spans are ignored, δ ∈ (0, 1).
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3.3.3 Optimization and Inference. Training Phase. In each training step of entity detection
(ED) and type prediction (TP) sub-tasks, we choose training samples from the source (S) and
target (T ) domains, respectively. Our training procedure is two-stage, which first trains in the ED
sub-task and then the TP sub-task is trained with the outputs of the ED sub-task as input. Their
training objectives are as follows:

LED = L
{S,T}
BIO + L

{S,T}
SE + L

{S,T}
TB + LT

dis

LTP = L
{S,T}
PT .

(7)

Inference Phase. During inference, the entity detection sub-task generates the candidate spans E.
Concretely, the entity spans in three tagging schemes (“BIO,” “Start and End,” and “Tie or Break”)
are denoted as EBIO, ESE, and ETB, respectively. Then the generated candidate entity spans E can
be formed as follows:

❶ EBIO or ESE or ETB (choosing one of them)
❷ EBIO ∪ ESE ∪ ETB (ensembling of them).

Then the type prediction sub-task gives the entity category le of candidate spans. The final
results of the NER task are as follows:

Ef = {(es , l
e )|le � “O′′, es ∈ E ∩ E}, (8)

where es is the entity span and le = argmaxp([MASK] = ve ∈ V|X) is its corresponding entity
category.

4 EXPERIMENTS

In this section, we conduct extensive experiments and verify the following research questions:
RQ1: How is the efficacy of the divide-and-transfer paradigm?
RQ2: Does the divide-and-transfer paradigm contribute to more gains (effective transfer) from

the source domain?
RQ3: How does DTrans-MPrompt perform under zero-shot cross-domain scenarios?
RQ4: How about the effect of the divide-and-transfer paradigm when applied to other sequence

labeling tasks similar to NER?

4.1 Experimental Settings

4.1.1 Datasets. Low-Resource Scenario. We evaluate our two frameworks on 10 different do-
main pairs, consisting of two source domain datasets: CoNLL2003 [44] (Newswire domain) and
Twitter [36] (Social Media domain), and five low-resource target domain datasets (only 100 or 200
labeled sentences) released by Liu et al. [35]: Politics, Natural Science, Music, Literature, and Arti-

ficial Intelligence. The detailed statistics of datasets are reported in Table 1. The text genres and
entity categories are completely different between the source and target domains, and the two
source domain (Newswire and Social Media) datasets are the most common NER datasets. So the
cross-domain setting of this work is more applicable in the real world.

Few-Shot Scenario.Additionally, we conduct extensive experiments under few-shot settings. Sim-
ilarly, CoNLL2003 [44] (Newswire domain) is used as the high-resource source domain. Following
the settings in other works [4, 7, 18, 69], we use MIT Movie [32] on the Review domain and
ATIS [15] on the Dialogue domain as the cross-domain few-shot datasets, serving as target do-
mains. Details of these datasets are shown in Table 2. We focus on the few-shot scenario where
only few-shot labeled data are available for training on the target domain. As in the work of Cui
et al. [7], a fixed number of instances per entity type (e.g., K = 10, 20, 50) are randomly sampled. If
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Table 1. Statistics of Cross-Domain NER Datasets

Domain Dataset #Train #Dev #Test #Category

Source

CoNLL2003
(Newswire)

14041 – – 4

Twitter
(Social Media)

4290 – – 4

Target

Politics 200 541 651 9

Natural Science 200 450 543 17

Music 100 380 465 13

Literature 100 400 416 12

Artificial Intelligence (AI) 100 350 431 14

Table 2. Statistics of Few-Shot NER Datasets

Dataset #Train #Test #Category K-shot

MIT Movie
(Review)

7.8k 2.0k 12 K = 10, 20, 50 100, 200, 500

ATIS
(Dialogue)

5.0k 893 79 K = 10, 20, 50

an entity has a smaller number of instances than the fixed number to sample, they use all of them
for training. We use the sampled datasets (K-shot) for our few-shot experiments.

Zero-Shot Scenario. Following Nguyen et al. [39], we utilize the three domains of Science, Litera-
ture, and Music released by Liu et al. [35] because they have the largest number of entities. Their
original statistics are shown in Table 1. As in the work of Nguyen et al. [39], we use one domain as
the source and the rest of the domains serve as targets, forming six cross-domain pairs. It is worth
noting that we only use the source domain labeled data for training and target domain data are
not available (i.e., training on source labeled training data and directly predicting on target test
data). Additionally, the entity type spaces of the source and target domain are different.

Slot Filling Task. Same as NER, slot filling is a classic sequence labeling task, which our divide-
and-transfer paradigm can adapt to. We evaluate our paradigm on SNIPS [6], a popular slot filling
dataset that contains 39 slot types, 7 domains, and about 2,000 training samples per domain. Fol-
lowing previous cross-domain slot filling studies [34, 58], we use one domain as the source and
the remaining six domains as targets each time, for a total of seven cross-domain pairs.

4.1.2 Baselines. Under a low-resource scenario, we compare our DTrans-SMix and DTrans-
MPrompt frameworks with the following SOTA methods. BiLSTM-CRF [25] combines the source
domain and the upsampled target domain data to train the model jointly. Coach [34] proposes
the coarse-to-fine method with the label description for the data scarcity problem. LM-NER [19]
bridges the source and target domain using parameter generation networks where language mod-
eling tasks and NER tasks in both source and target domains are integrated. NNShot and Struct-

Shot [60] are two metric-based few-shot NER methods. They exploit a nearest neighbor classifier
for few-shot prediction. Compared with NNShot, StructShot develops a Viterbi algorithm during
decoding. We extend these two methods to our cross-domain settings by jointly training with
the source and target domain data. MultiCell-LM [21] develops a multi-cell compositional LSTM
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structure on top of BERT based on the multi-task transfer learning for learning domain-invariant
in the entity level, which models each entity type using a separate cell state. Template [7] is a
template-based NERmethod that treats NER as an LM ranking problem in a sequence-to-sequence
framework. In the work of Liu et al. [35], BERT-JF jointly fine-tunes BERT on both the source and
upsampled target domain data. BERT-PF first pre-trains BERT on the source domain data, then fine-
tunes it to the target domain. Style-NER [3] studies the data augmentation in cross-domain NER,
which adopts the adversarial transfer idea for projecting the source domain data into the target
domain to generate the target data in the labeled data sparsity scenario. LightNER [4] is a gen-
erative framework [57] with prompt-guided attention that incorporates continuous prompts into
the self-attention layer for low-resource NER. We pre-train it on the source domain data and then
fine-tune it to the target domain, following the original paper. EntLM [38] proposes a template-free
approach to prompt NER under few-shot settings. We jointly train it with the source and target
domain data for adapting it to the cross-domain settings. LST-NER [66] formulates cross-domain
NER as a graph matching problem by constructing label graphs in both source and target label
spaces to cope with the distinct label sets across domains. Overall, most competitive baselines all
model the entangled entity span and type information in a monolithic process fashion.
Under a few-shot scenario, we compare our DTrans-SMix and DTrans-MPrompt with the fol-

lowing few-shot NER methods. Example [69] is a few-shot NER method inspired by extractive
question answering, which first trains model on source domain, then models the correlation be-
tween support examples and a query on target domain.MP-NSP [18] is a prototype-based method
that creates prototypes as the representations for different labels and then predicts via the nearest
neighbor criterion. Some baselines from low-resource scenarios like NNShot [60], StructShot [60],
Template [7], LightNER [4], and EntLM [38] can be directly applied to the few-shot scenario.

Under a zero-shot scenario, because our previously published DTrans-SMix [65] cannot be
adapted to this scenario, we only compare DTrans-MPrompt with the following zero-shot cross-
domain NER methods. LUKE [56] proposes an entity-aware self-attention mechanism and consid-
ers the types of tokens when computing attention scores. To extend LUKE to zero-shot learning,
Nguyen et al. [39] propose to learn entity features for each entity label and then compute the dot
product with the token hidden representations.DOZEN [39] proposes cross-domain zero-shot NER
that learns the relations between entities from an existing ontology of knowledge graph across dif-
ferent domains. DOZEN� [39] is the ablated version of DOZEN without entity analogy modeling
of multiple domains. Our DTrans-MPrompt does not use the external knowledge graph.
For a slot filling task, we evaluate our divide-and-transfer paradigm by comparing with

the following cross-domain slot filling SOTA methods. Concept Tagger (CT) [13] proposes
to exploit slot descriptions for generalizing to unseen slot types. Robust Zero-shot Tagger

(RZT) [46] proposes to use both slot descriptions and a few examples of slot values for learning
transferable semantic representations across domains.Coarse-to-fine Approach (Coach) [34] is
a coarse-to-fine slot-filling model that also uses slot descriptions for unseen slot types.Abundant
Information Slot Filling Generator (AISFG) [58] incorporates domain descriptions, slot
descriptions, and examples with context by a generative model with a query template to deal
with slot type and example ambiguity issues.

4.1.3 Implementation Details. Our frameworks are based on BERT-base [8] for a fair compari-
son with previous SOTAs. Other BART-related baselines take BART-base [27] as the backbone. For
main results, we tune hyperparameters with Grid-Search according to the results on dev sets. The
learning rate is 1e-5, maximum training epochs is 30, and the seed of random numbers is set to 0.
In DTrans-SMix, for each mini-batch, we sample 16 sentences from the source and target domain
datasets, respectively. The fixed mixup ratios (α , β) are set to (0.3, 0.7) by tuning from {(0.1, 0.9),. . . ,
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(0.9, 0.1)}. ξ in entity detection and type prediction sub-task is set to 0.5 and 0, respectively. τ is
tuned from {0.1, 1.0, 10} in two sub-tasks and finally is set to 0.1 on all datasets, except Politics is 10
in the entity detection sub-task. L is set to 3 by tuning from 0 to 12. We tune μ from {0.2, 0.5, 1.0, 2.0}
and set 0.5 on the Politics and AI datasets, and others are 1.0. λ is set to 0.1. In DTrans-MPrompt,
for each mini-batch in two sub-tasks, we sample 32 sentences from the source and target domains,
respectively. The EMA α is set to 0.995, and the filtering threshold δ is tuned from {0.5, 0.55, 0.6,. . . ,
0.9}. When generating candidate spans E, we use ❶ (choosing EBIO). Following prior work, we
use the F1 score as the evaluation metric based on exact span matching. We implement our code
with PyTorch based on huggingface Transformers [54]. The baseline (except marked with † and
LST-NER) results of the first five domain pairs are all from the work of Liu et al. [35]. We report the
results of LST-NER [66] from its original paper. As LST-NER [66] has not released the official code,
we cannot produce results of the last five domain pairs for it. For other experimental results, we
follow the officially released implementation. For efficiency experiments, the specifications of the
system used for the time measurements are as follows: (1) the CPU processor is Intel Xeon Silver

4110 CPU @ 2.10 GHz, (2) the GPU is Tesla T4 (16 G), (3) the operating system is CentOS 7, and (4)
the versions of Python and PyTorch respectively are Python 3.7.4 and PyTorch 1.8.1.

4.2 Main Results under a Low-Resource Scenario (RQ1)

Table 3 and Table 4 show the main results of our frameworks compared to competitive baselines.
On 10 domain pairs, our frameworks consistently outperform the previous SOTAs with large
margins (2.10% ∼ 8.61% absolute F1 increase in DTrans-SMix, 6.23% ∼ 9.98% increase in DTrans-
MPrompt). This demonstrates that the divide-and-transfer paradigm is more effective, which
provides a new perspective on cross-domain NER. Most previous cross-domain SOTAs (e.g.,
MultiCell-LM [21], BERT-JF [35], Style-NER [3], and LST-NER [66]) take the end-to-end sequence
labeling framework as the backbonewith devised transfer strategies. Our remarkable improvement
reflects the limitation that sequence labeling is not ideal in the cross-domain transfer of NER and
impairs the efficacy of transfer strategies due to its coupled information transfer. Meanwhile, the
main results indicate that the divide-and-transfer paradigm seems to be more suitable as a bench-
mark transfer framework in NER. Figure 6 shows the learning curves during training, which not
only confirms the consistent improvements of divide-and-transfer but also reflects its robust train-
ing process and powerful generalization. We also report the training and prediction times for some
of the baseline methods and ours in Table 3 and Table 4. Although our methods do not achieve the
optimal efficiency for model training, its training time is acceptable (especially the newly proposed
DTrans-MPrompt in this article) considering its significant performance improvement comprehen-
sively. It is worth noting that the prediction time of our methods is comparable in comparison with
other baselines. That is to say, our method exhibits no efficiency shortcomings during the infer-
ence application phase. Additionally, we observe that LightNER [4] has higher training efficiency
but lower prediction efficiency because it adopts the parameter-efficient fine-tuning [16, 26, 30]
strategy during training and generates the word by word in an auto-regressive manner during
prediction. DTrans-SMix requires longer training time due to the construction process of the inter-
mediate augmented domain. Overall, DTrans-MPrompt is more efficient than DTrans-SMix [65].

In Table 3 and Table 4, we observe that no prior baselines can always occupy an absolute advan-
tage on 10 domain pairs, whereas our proposed divide-and-transfer paradigm (both DTrans-SMix
and DTrans-MPrompt) can keep the superiority consistently. Our comparison baselines also con-
tain some advanced few-shot or low-resource NER methods (e.g., NNShot [60], StructShot [60],
and LightNER [4]). We can see that our divide-and-transfer-based frameworks both significantly
outperform them by a large margin. The reason for this is that those few-shot or low-resource
baselines learn entity span and type information in a monolithic framework by a compositional
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Table 3. F1 Scores on Five Different Domain Pairs That Transfer from the Source Domain Newswire to

Five Target Domains, Respectively

Source Domain CoNLL2003 (Newswire)→

Target Domain Politics Natural Science Music Literature AI

Methods BiLSTM-CRF [25] 56.60 49.97 44.79 43.03 43.56

Coach [34] 61.50 52.09 51.66 48.35 45.15

LM-NER [19] 68.44 64.31 63.56 59.59 53.70

NNShot [60]† 65.84 64.11 65.72 61.24 56.23

StructShot [60]† 66.69 65.98 68.62 63.34 57.38

Template [7]† 65.84 61.95 65.57 63.78 55.01

BERT-JF [35] 68.85 65.03 67.59 62.57 58.57

BERT-PF [35] 68.71 64.94 68.30 63.63 58.88

MultiCell-LM [21] 70.56 66.42 70.52 66.96 58.28

Style-NER [3]† 68.78 63.95 65.43 60.94 58.73

LightNER [4]† 69.36 63.47 70.20 64.77 53.96

Training Time 31.84 min. 31.39 min. 31.12 min. 32.41 min. 32.26 min.

Prediction Time 10.49 s 9.12 s 7.65 s 5.86 s 6.32 s

EntLM [38]† 69.19 63.93 68.72 63.55 57.48

Training Time 88.30 min. 94.29 min. 78.91 min. 86.99 min. 79.48 min.

Prediction Time 4.26 s 4.00 s 4.10 s 3.86 s 3.65 s

LST-NER [66] 70.44 66.83 72.08 67.12 60.32

Ours
Divide-and-Transfer

DTrans-SMix
Improv.

76.70
+6.14

72.35
+5.52

76.10
+4.02

69.22
+2.10

68.93
+8.61

Training Time 127.26 min. 126.09 min. 127.30 min. 125.08 min. 126.16 min.

Prediction Time 3.02 s 2.64 s 2.04 s 2.06 s 2.15 s

DTrans-MPrompt
Improv.

80.54
+9.98

73.06
+6.23

79.54
+7.46

73.51
+6.39

70.13
+9.81

Training Time 76.82 min. 77.91 min. 70.77 min. 70.23 min. 71.32 min.

Prediction Time 4.62 s 3.88 s 3.29 s 3.00 s 3.05 s

Bold marks the highest number among all methods. Underline indicates the prior SOTA methods. Italic number

indicates the absolute increase compared with the prior SOTA. † marks produced with official implementation.

“min.” means minute and “s” means second.

tagging scheme (e.g., B-LOC) or generative framework. The source knowledge cannot be trans-
ferred into target domains sufficiently owing to different transferability for two kinds of entity
information. Another reason may be the different settings between the cross-domain and the few-
shot or low-resource scenario where few-shot NER exploits the support set of each entity category
for learning general patterns, and low-resource NER focuses on limited target data. Cross-domain
NER tends to study cross-domain strategies for transferring knowledge from the high-resource
domain to low-resource ones. Compared with DTrans-SMix that adopts parameter sharing and
intermediate domain augmentation cross-domain strategies, DTrans-MPrompt gets a better effect
on all of the domain pairs. The main reason may be that the prompt-tuning strategy modifies the
type prediction into a unified label word prediction task despite different entity categories across
domains, which obviously bridges the gap on entity categories between the source and target do-
main. Meanwhile, the multi-view decoding strategy profits entity span cross-domain transfer by
capturing more domain-invariant features.

4.2.1 Parameter Analysis. To dispel concerns over multiple models (more parameters) in our
claimed divide-and-transfer paradigm, we show previous SOTA performance under different pa-
rameters in Table 5, when respectively transferring from CoNLL2003 and Twitter to five target
domains. We can see that our framework DTrans-SMix with 216.6M parameters and DTrans-
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Table 4. F1 Scores on Another Five Domain Pairs That Transfer from the Source Domain Social Media to

Five Target Domains, Respectively

Source Domain Twitter (Social Media)→

Target Domain Politics Natural Science Music Literature AI

Methods BiLSTM-CRF [25] 53.64 47.33 48.85 45.23 44.08

Coach [34] 55.03 50.22 49.91 44.88 42.98

LM-NER [19] 66.99 64.23 61.48 59.09 50.46

NNShot [60]† 69.13 64.59 56.78 53.97 51.02

StructShot [60]† 71.27 65.24 61.82 58.47 57.30

Template [7]† 66.70 64.98 64.87 61.42 56.68

BERT-JF [35] 67.52 64.51 67.74 61.38 57.05

BERT-PF [35] 68.60 62.23 68.06 61.91 54.72

MultiCell-LM [21] 66.59 63.79 66.54 59.02 53.82

Style-NER [3]† 67.33 63.14 67.12 62.06 57.76

LightNER [4]† 68.49 62.57 66.02 62.40 52.86

Training Time 8.82 min. 7.50 min. 7.40 min. 7.66 min. 7.58 min.

Prediction Time 11.04 s 9.22 s 7.77 s 5.18 s 6.64 s

EntLM [38]† 71.34 64.59 68.10 63.77 59.85

Training Time 29.23 min. 25.06 min. 25.79 min. 23.49 min. 21.99 min.

Prediction Time 4.27 s 4.06 s 4.19 s 3.72 s 3.58 s

Ours
Divide-and-Transfer

DTrans-SMix
Improv.

74.62
+3.28

71.37
+6.13

74.41
+6.31

69.67
+5.90

64.55
+4.70

Training Time 75.74 min. 77.76 min. 77.05 min. 73.74 min. 77.86 min.

Prediction Time 3.21 s 2.68 s 2.46 s 2.10 s 2.16 s

DTrans-MPrompt
Improv.

79.86
+8.52

73.18
+7.94

77.93
+9.83

72.74
+8.97

69.13
+9.28

Training Time 22.46 min. 22.80 min. 21.96 min. 22.62 min. 21.62 min.

Prediction Time 4.63 s 3.91 s 3.30 s 3.00 s 3.06 s

Bold marks the highest number among all methods. Underline indicates the prior SOTA methods. Italic number

indicates the absolute increase compared with the prior SOTA. † marks produced with official implementation. “min.”

means minute and “s” means second.

Fig. 6. F1 score vs. Training iterations (CoNLL2003 to the Music domain).
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Table 5. Average F1 Score over Five Target Domains (CoNLL2003 or Twitter as the Source Domain)

with Different Numbers of Parameters

CoNLL2003 Method F1 (Averaged) #Parameter Speed (batches/seconds) ↑

BERT-JF (BERTBASE) 64.52 108.9M 15.0 B/s
BERT-JF (BERTLARGE) 67.88 334.7M 6.8 B/s

MultiCell-LM (BERTBASE) 66.55 119.5M 2.6 B/s
MultiCell-LM (BERTLARGE) 67.13 344.7M 2.1 B/s

EntLM (BERTBASE) 64.57 108.3M 4.4 B/s
EntLM (BERTLARGE) 68.41 333.6M 1.8 B/s

LightNER (BARTBASE) 64.35 164.6M 1.9 B/s
LightNER (BARTLARGE) 70.37 469.9M 1.1 B/s

DTrans-SMix (BERTBASE) 72.66 216.6M 6.7 B/s
DTrans-MPrompt (BERTBASE) 75.36 218.4M 4.3 B/s

Twitter Method F1 (Averaged) #Parameter Speed (batches/seconds) ↑

BERT-JF (BERTBASE) 63.64 108.9M 15.1 B/s
BERT-JF (BERTLARGE) 65.56 334.7M 6.5 B/s

MultiCell-LM (BERTBASE) 61.95 119.5M 2.7 B/s
MultiCell-LM (BERTLARGE) 63.86 344.7M 2.4 B/s

EntLM (BERTBASE) 65.53 108.3M 3.9 B/s
EntLM (BERTLARGE) 67.63 333.6M 2.0 B/s

LightNER (BARTBASE) 62.47 164.6M 2.0 B/s
LightNER (BARTLARGE) 67.61 469.9M 1.2 B/s

DTrans-SMix (BERTBASE) 70.92 216.6M 6.2 B/s
DTrans-MPrompt (BERTBASE) 74.57 218.4M 4.4 B/s

B/s refers to the processed number of batches per second during the test.

MPrompt with 218.4M parameters significantly outperform BERT-JF (334.7M), MultiCell-LM
(344.7M) and EntLM (333.6M) with BERTLARGE, and LightNER (469.9M) with BARTLARGE, which
indicates that divide-and-transfer does not mainly gain from more parameters but from the dis-
entangled entity information considering distinct transferability of entity span and type. For the
running efficiency under the same batch size and experimental environment, our two frameworks
are still acceptable. In fact, two sub-tasks in DTrans-SMix can be processed in parallel, which will
further accelerate the efficiency. Although type prediction in DTrans-MPrompt needs to construct
the input for each entity span, the entity detection sub-task reduces the number of candidate spans
and inputs in type prediction can be processed in batches.

4.2.2 Ablation Studies. We evaluate the influence of each component from our DTrans-
MPrompt framework in Table 6. We can observe the following:

(1) In DTrans-MPrompt, without the multi-view decoding strategy (MVD) (i.e., only keeping
the “BIO” tagging scheme), the score drops from 76.14% to 74.43% with CoNLL2003 as the
source domain and 75.25% to 74.13% with Twitter as the source. The reason is that MVD
benefits from the more domain-invariant features in different views.

(2) In DTrans-MPrompt, replacing Prompt-tuning with token type classification shows that
prompt-tuning respectively contributes to 2.92% and 2.08% increase with CoNLL2003 and
Twitter as the source domain, as it lessens the domain gap by the unified label word pre-
diction, which possesses better ability to bridge the domain gap caused by the mismatch
between the different domain-specific entity types.
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Table 6. Ablation Studies of Our DTrans-MPrompt Framework on dev Sets

Framework Dev F1 (CoNLL2003) Dev F1 (Twitter)

DTrans-MPrompt with ❶(EBIO) as candidate spans E 76.14 75.25

w/o Multi-view decoding strategy in ED 74.43 74.13

w/o Prompt-tuning in TP 73.22 72.99

w/o Re-detecting strategy 74.98 74.33

w/o Mean teaching 75.31 74.84

w ❷ as candidate spans E 73.16 73.17

w ❶(ESE) as candidate spans E 74.01 73.39

w ❶(ETB) as candidate spans E 61.08 60.05

Scores are averaged over five target domains (CoNLL2003 or Twitter as the source domain).

Table 7. F1 Score Gain Comparison of the Cross-Domain Transfer Strategy in Two Sub-Tasks between

DTrans-SMix and DTrans-MPrompt

Gains CoNLL2003→

Δ Politics Natural Science Music Literature AI Avg

Entity Detection
DTrans-SMix 0.38 0.52 0.75 0.08 0.87 0.52

DTrans-MPrompt 0.75 1.18 2.37 2.71 1.54 1.71

Type Prediction
DTrans-SMix 3.23 0.30 0.43 0.33 1.44 1.15

DTrans-MPrompt 3.43 3.42 3.02 3.56 1.16 2.92

Gains Twitter→

Δ Politics Natural Science Music Literature AI Avg

Entity Detection
DTrans-SMix 0.24 0.05 0.24 0.17 0.40 0.22

DTrans-MPrompt 0.54 0.25 1.20 0.49 1.66 0.83

Type Prediction
DTrans-SMix 1.13 1.29 0.66 0.91 1.69 1.14

DTrans-MPrompt 4.15 2.94 3.14 3.13 4.94 3.66

(3) Due to the pipeline structure between two sub-tasks in DTrans-MPrompt, the results are
affected by error accumulation. Re-detecting strategy increases the F1 score by filtering the
false-positive candidate entity spans to alleviate the accumulative error. Overall, interaction
between two sub-tasks under the divide-and-transfer paradigm is necessary, and devising
corresponding interaction strategies remains an open problem.

(4) In light of low-resource target domains, the mean teaching strategy in DTrans-MPrompt
improves the performance due to its stable optimization and prevents from overfitting the
limited target-domain training data.

(5) Otherwise, in DTrans-MPrompt, ensembling the outputs of multiple span decoding strate-
gies [❷] is worse than choosing the “BIO” scheme [❶ (EBIO)] during generating candidate en-
tity spans because of more false-positive spans and decoding conflicts among three schemes,
which bring the great burden for the type prediction sub-task. Choosing ESE or ETB as candi-
dates leads to the poor F1 score because the SE scheme profits the long entity and TB cannot
detect single-token entities.

4.2.3 Comparison of the Cross-Domain Transfer Strategy between DTrans-SMix and DTrans-

MPrompt. As shown in Table 7, for two divide-and-transfer paradigm based frameworks, we
report the F1 score gains before and after adopting corresponding sub-task cross-domain transfer
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Table 8. F1 Score Gains of the Target Domain from the Source Domain by Transfer

Without/with Source Domain
CoNLL2003→ Five

Low-Resource domains
Twitter→ High-

Resource BioMedical

MultiCell-LM ↑2.40 (64.15/66.55) ↑1.42 (78.76/80.18)
BERT-JF ↑2.66 (61.86/64.52) ↑1.55 (79.17/80.72)
Style-NER ↑2.13 (61.44/63.57) ↑2.20 (79.60/81.80)
EntLM ↑1.56 (63.01/64.57) ↑1.57 (80.71/82.28)

Divide ↑3.12 (68.26/71.38) ↑2.10 (80.45/82.55)
DTrans-SMix ↑4.17 (68.49/72.66) ↑2.60 (80.83/83.43)

DTrans-MPrompt ↑4.33 (71.03/75.36) ↑3.69 (80.38/84.07)

↑means the increase after using the source.

strategies on dev sets with CoNLL2003 and Twitter as the source domains, respectively. We can see
that cross-domain transfer strategies of DTrans-MPrompt in entity detection and type prediction
sub-tasks both achieve greater gains compared with our previously published DTrans-SMix [65].
The reason is that themulti-view decoding strategy and prompt-tuning-based label space unification

can respectively capture more domain-invariant entity span features and exploit entity type
correlations across domains. The cross-domain transfer strategies from DTrans-MPrompt in this
article fully tap into the potential of the divide-and-transfer paradigm.

4.3 Discussion

4.3.1 Gains from the Source Domain (RQ2). As shown in Table 8, to show the advantage of
our divide-and-transfer paradigm in cross-domain transfer, we compare the average performance
gains on five low-resource target domains before and after using the source domain data from
CoNLL2003. The blue numbers mean only using the target domain data, and the red ones repre-
sent using both the source and target data. We see that DTrans-SMix and DTrans-MPrompt both
gain more from the source domain data (4.17% and 4.33% absolute increase) than previous SOTAs
based on sequence labeling. This shows the efficacy of divide-and-transfer, which disentangles
the coupled information and devises the corresponding transfer strategies in each sub-task. That
is to say, more information can be transferred from the source to the target domain under the
divide-and-transfer paradigm than sequence labeling, which effectively confirms our motivation
and more effective transfer in cross-domain NER. To explore the effectiveness of dividing the NER
task and eliminate the interference from transfer strategies, we only jointly train the DTrans-SMix
framework with a specific classification head across domains in each sub-task (notated as Divide
in Table 8), same as BERT-JF [35]. We see that task decomposition with the same transfer strategy
still achieves significant gains, which shows that dividing the NER task can unearth the transfer
strategies and contribute to the information transfer.
Surprisingly, our two frameworks without using the source domain data even significantly sur-

pass previous SOTAs with the source data in Table 8 (Figure 7 also shows this point). That is
because disentangling the information by dividing the NER task benefits the low-resource NER
a lot. The NER task decomposition provides a better basis for cross-domain NER. Furthermore,
we also perform the cross-domain transfer in the high-resource scenario, where Twitter [36] with
4,290 training sentences is the source domain and BioMedical [40] with 3,033 training sentences
is the target (with 1,003 development and 1,906 test sentences). We see that our two frameworks
still obtain 2.60% and 3.69% gains, and the advantage of our proposed paradigm without using the
source domain over others with the source is reasonably reduced.
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Table 9. F1 Scores under Different Settings on Five Target Domains

Politics Natural Science Music Literature AI

BERT-DF [35] 66.56 63.73 66.59 59.95 50.37
BERT-JF (CoNLL2003) [35] 68.85 65.03 67.59 62.57 58.57

BERT-JF (Twitter) 67.52 64.51 67.74 61.38 57.05

DTrans-SMix w/ only target domain 71.15 70.40 74.10 66.74 60.05
DTrans-SMix (CoNLL2003) 76.70 72.35 76.10 69.22 68.93
DTrans-SMix (Twitter) 74.62 71.37 74.41 69.67 64.55

DTrans-MPrompt w/ only target domain 75.24 71.82 75.54 69.24 63.30
DTrans-MPrompt (CoNLL2003) 80.54 73.06 79.54 73.51 70.13
DTrans-MPrompt (Twitter) 79.86 73.18 77.93 72.74 69.13

BERT-DF means requiring no source domain data and directly fine-tuning BERT on the target domain; results are

reported from Liu et al. [35]. BERT-JF means that BERT-DF requires source domain data by jointly training on both

CoNLL2003/Twitter and the target domain data. DTrans-SMix w/only target domain and DTrans-MPrompt w/ only

target domain indicate that we do not use source domain data. DTrans-SMix (CoNLL2003) and DTrans-MPrompt

(CoNLL2003) mean that we use CoNLL2003 as the source domain. DTrans-SMix (Twitter) and DTrans-MPrompt

(Twitter) indicate that we use the Twitter source domain data.

As shown in Table 9, the methods that only require target domain data are significantly worse
than those approaches using both source domain and target domain data. Although the pre-trained
models (e.g., BERT) have strong transfer learning ability, they are pre-trained on the corpus
collected from the general domain, and the corpus is not related to the NER task. Therefore, it has
a limited impact on improving the target domain in comparison with using source domain NER
data. In fact, Figure 7 also reports the results of our method DTrans-SMix and DTrans-MPrompt
without using source domain data (DTrans-SMix w/o Source Domain, DTrans-MPrompt w/o
Source Domain). We can see that using the source domain data brings significant improvements
in both DTrans-SMix and DTrans-MPrompt, especially in the extremely low-resource scenario,
which shows the necessity and effectiveness of cross-domain transfer in the low-resource NER.
As shown in Table 9, we report the performance of some method variants (e.g., BERT-DF,
DTrans-SMix w/ only target domain, and DTrans-MPrompt w/ only target domain) which do
not use source domain data, and see that these variants still have a significant performance
gap compared to those methods using source domain data, such as DTrans-SMix (CoNLL2003),
DTrans-SMix (Twitter), DTrans-MPrompt (CoNLL2003), and DTrans-MPrompt (Twitter).

4.3.2 Effect of the Target Domain Data Size. As depicted in Figure 7, we study the performance
changes with different numbers of training data from the target domain. We can see the following
as the number of target domain data is reduced. First, the F1 score drops, which reflects the diffi-
culty of the NER task in the extremely low-resource scenario. Second, gains from using the source
domain data become greater whether in DTrans-SMix or in DTrans-MPrompt, which shows the ne-
cessity and effectiveness of cross-domain transfer in the low-resource NER. Third, our two frame-
works outperform previous SOTAs with large margins, which shows the superiority of the divide-
and-transfer paradigm in the scenario of low resources. Additionally, DTrans-MPrompt with only
10% or 25% target domain data (Music or Science) can rival with previous SOTAs of using the full
target data. The significant advantage over prior competitive baselines from that our divide-and-
transfer paradigm can disentangle the coupled information, then benefit from better performance
on low-resource data and more effective transfer based on the tailor-designed transfer strategy in
each sub-task.

4.3.3 Error Analysis. As shown in Table 10, we show the performance of two sub-tasks (entity
detection and type prediction, ED and TP) in DTrans-SMix and DTrans-MPrompt where the TP
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Fig. 7. F1 score vs. data size in Music and Science target domains (averaged over three samplings, with

CoNLL2003 and Twitter as the source, respectively).

Table 10. F1 Scores of Two Divided Sub-Tasks and Their Final Combination NER Result, Where CoNLL2003

and Twitter Respectively Serve as the Source Domain and Five Target Domains

DTrans CoNLL2003→ Politics Natural Science Music Literature AI Average

Entity Detection 90.16 85.42 90.00 89.41 83.99 87.80

SMix Type Prediction 81.62 81.05 83.28 75.64 76.82 79.68

NER Final 76.70 72.35 76.10 69.22 68.93 72.66

Entity Detection 91.06 86.42 91.05 90.33 84.57 88.69

MPrompt Type Prediction 88.00 83.91 86.66 80.80 81.04 84.08

NER Final 80.54 73.06 79.54 73.51 70.13 75.36

DTrans Twitter→ Politics Natural Science Music Literature AI Average

Entity Detection 90.07 86.16 89.58 88.77 81.98 87.31

SMix Type Prediction 78.60 78.93 81.47 75.89 76.01 78.18

NER Final 74.62 71.37 74.41 69.67 64.55 70.92

Entity Detection 90.93 86.66 90.48 89.51 83.90 88.30

MPrompt Type Prediction 86.77 84.91 85.79 81.07 80.76 83.86

NER Final 79.86 73.18 77.93 72.74 69.13 74.57
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Table 11. F1 Scores on Test Sets When Using Different Prompts in DTrans-MPrompt, and CoNLL2003 and

Twitter Respectively Serve as the Source Domain

Prompt
CoNLL2003→

Politics Natural Science Music Literature AI Avg

① New York is the [MASK] entity 80.54 73.06 79.54 73.51 70.13 75.36

②
New York belongs to
[MASK] category

81.14 72.05 79.45 72.59 68.41 74.73

③
New York should be tagged as

[MASK] category
80.46 72.37 80.38 72.68 68.79 74.94

④
The entity type of New York is

[MASK]
79.67 73.04 78.45 71.88 69.06 74.42

Prompt
Twitter→

Politics Natural Science Music Literature AI Avg

① New York is the [MASK] entity 79.86 73.18 77.93 72.74 69.13 74.57

②
New York belongs to
[MASK] category

80.43 71.87 78.86 72.08 67.08 74.06

③
New York should be tagged as

[MASK] category
79.58 73.31 78.55 71.95 67.84 74.25

④
The entity type of New York is

[MASK]
80.17 73.08 77.35 72.97 67.95 74.30

Take the entity span “New York” for example.

sub-task uses the ground-truth entity spans as input. We observe that F1 scores of the ED sub-task
have achieved an average of 87.80% and TP reaches 79.68% with CoNLL2003 as the source domain,
and 87.31% and 78.18% with Twitter as the source domain in DTrans-SMix. Thus, the bottleneck
of main results lies in the TP sub-task because of distinct label sets across domains, larger label
spaces, and intractable tasks onmain datasets compared to ED, hindering the cross-domain and few
labeled learning. Additionally, the F1 scores of two sub-tasks in DTrans-MPrompt are comparable
onmost datasets, whereas their final combinations (the candidate spans generated from ED as TP’s
input) are obviously lower. Thus, the factor restricting improvements in DTrans-MPrompt mainly
originates from error propagation between two sub-tasks, which remains an open problem in this
cascaded architecture. We propose a simple re-detecting strategy to alleviate this issue effectively,
but it still needs further exploration.
Compared to DTrans-SMix, the prompt-tuning strategy in DTrans-MPrompt unifies the predic-

tion task, benefiting the cross-domain learning of entity typing and then improving the TP sub-task
significantly. However, prompt-tuning leads to the pipeline structure in DTrans-MPrompt while
DTrans-SMix is parallel between the ED and TP sub-tasks. Therefore, interactive combinations
between two sub-tasks in the divide-and-transfer paradigm need more in-depth exploration. This
article mainly focuses on exploring the efficacy of divide-and-transfer in cross-domain NER where
some components may be simple, but it still outperforms previous SOTAswith large margins (aver-
age 5.27% and 8.44% absolute F1 score increase), which highlights the advantage and great potential
of this paradigm in the future, providing a new insight into cross-domain NER.

4.3.4 Prompt Analysis. To explore the effect of prompt in Prompt-Tuning-based Label Space

Unification of DTrans-MPrompt, we utilize different prompts and report their F1 scores in Table 11.
We can observe that DTrans-MPrompt is not very sensitive to specific prompts, which shows its
stability and robustness. The case also illustrates that Prompt-Tuning-based Label Space Unification

benefits from the unified entity type space for exploiting label correlations across domains rather
than manual prompt engineering. Comprehensively, the first prompt in Table 11 is the most
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Table 12. F1 Scores of DTrans-MPrompt under Two Training Paradigms

Source Domain Training Paradigm Politics Natural Science Music Literature AI Avg

CoNLL2003
Pretrain-then-fine-tuning 80.15 75.81 80.26 73.14 69.96 75.86

Joint training 80.54 73.06 79.54 73.51 70.13 75.36

Twitter
Pretrain-then-fine-tuning 79.84 74.31 78.54 73.18 69.30 75.03

Joint training 79.86 73.18 77.93 72.74 69.13 74.57

Table 13. Cross-Domain F1 Scores on MIT Movie and ATIS under Few-Shot Settings, Where

CoNLL2003 Is the Source Domain

Target Domain MIT Movie ATIS

K-shot 10 20 50 100 200 500 10 20 50

Example. [69] 40.1 39.5 40.2 40.0 40.0 39.5 17.4 19.8 22.2
MP-NSP [18] 36.4 36.8 38.0 38.2 35.4 38.3 71.2 74.8 76.0
NNShot [60] 42.6 52.6 55.5 75.8 79.1 – 89.2 92.8 94.3

StructShot [60] 44.4 57.0 61.8 77.4 79.6 – 89.8 93.1 94.5
Template [7] 42.4 54.2 59.6 65.3 69.6 80.3 77.3 88.9 93.5
LightNER [4] 54.6 65.1 71.0 67.9 76.2 83.0 82.3 88.6 92.2
EntLM [38] 39.5 57.6 69.7 75.7 78.9 82.5 81.3 87.0 92.8

DTrans-SMix (Ours) 61.9 73.8 78.6 80.5 81.9 85.3 93.2 94.9 95.8
DTrans-MPrompt (Ours) 63.2 74.6 79.3 81.1 82.9 85.4 93.6 95.0 96.3

Bold marks the highest number among all methods. Underline indicates the prior SOTA methods. For fair

comparison, taking BERTBASE or BARTBASE in competitive baselines with official implementation.

intuitive and effective, and DTrans-MPrompt constructs the first one for each candidate entity
span in this article.

4.3.5 Training Paradigm Analysis. For cross-domain NER, there are usually two training
paradigms: pretrain-then-fine-tuning and joint training. Pretrain-then-fine-tuning indicates that
the model is first trained in the source domain and then fine-tuned in the target domain. Joint
training means that we train the model in the source and target domains jointly. As shown
in Table 12, we report the performance of respectively transferring from CoNLL2003 and
Twitter to five target domains under these two training paradigms. We only show the results of
DTrans-MPrompt, because DTrans-SMix proposed in our conference version [65] simultaneously
requires source and target domain data for constructing the intermediate augmented domain,
which can only be trained under the joint training paradigm. Comprehensively, training with both
source and target domain data jointly may not lead to better results, which is consistent with the
conclusion drawn by LST-NER [66] and CrossNER [35]. However, the focus of this work is not
on using pretrain-then-fine-tuning or joint training, but on decoupling the NER task and devising
cross-domain strategies. Even in such circumstances, our method still achieves significant
improvements.

4.4 Few-Shot Scenario

In this subsection, we evaluate the model performance under the few-shot setting, where few-
shot datasets serve as target domains and CoNLL2003 is the source domain. Table 13 reports the
few-shot results with K instances for each entity category in target domains. Besides baselines
in the main results, we also consider Example [69] (a few-shot NER learning method inspired by
extractive question answering) andMP-NSP [18] (a prototype-basedmethod). The hyperparameter
settings use the majority of tuned values from the main experiments.
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Fig. 8. F1 scores of two divided sub-tasks on K-shot datasets.

We can see that our two frameworks still achieve new SOTAs on all datasets in Table 13, which
shows the great generalization of the divide-and-transfer paradigm, especially in an extremely few-
shot scenario (e.g., 8.6% increase onMITMovie under 10-shot). Our advantage over prior baselines
becomes increasingly obvious as K decreases, whereas our method achieves limited improvements
in relatively high resource scenarios (e.g., K = 200, 500) due to rich target domain data. Overall,
the extensive experiments confirm the superiority of the divide-and-transfer paradigm on cross-
domain NER because of the entity information disentanglement and distinct cross-domain transfer
strategies for entity span and type information.
In comparison with DTrans-SMix, DTrans-MPrompt further improves the performance of the

divide-and-transfer paradigm on two few-shot datasets. To explore the reason behind this, Figure 8
gives F1 scores of the entity detection (ED) and type prediction (TP) sub-task on K-shot datasets.
We can observe that DTrans-MPrompt achieves consistent advantages over DTrans-SMix on the
entity detection (ED) sub-task under different K-shots owing to more shared domain-invariant
information by the multi-view decoding strategy. Likewise, DTrans-MPrompt shows its prepon-
derance on the type prediction (TP) sub-task as a result of the unified label space that exploits
label correlation across domains and narrows down the domain gap. All in all, DTrans-MPrompt
fulfills more precise and concise cross-domain strategies in two sub-tasks, which contributes to
more effective transfer.

4.5 Zero-Shot Scenario (RQ3)

In this section, we evaluate the zero-shot transfer ability of the proposed DTrans-MPrompt, com-
pensating for the deficiency that DTrans-SMix [65] cannot deal with zero-shot scenarios. Under
zero-shot scenario, the model is only trained on source domain data and directly tested on target
domain data. Concretely, our DTrans-MPrompt is trained with loss functions related to source do-

main data—that is, LSBIO, L
S
SE, L

S
TB, and L

S
PT in Equation (7). As shown in Table 14, our proposed

method in this article achieves consistent advantages when transferring between domains of Sci-
ence, Literature, andMusic in pairs, as task decomposition makes the smaller domain gap in entity
detection and type prediction sub-tasks. What is more, the multi-view decoding strategy can cap-
ture the intrinsic entity boundary information in the entity detection sub-task and prompt-tuning

has stronger domain generalization ability for typing entities.
To go into in-depth understanding of the domain generalization ability on two sub-tasks, and

show the performance on seen and unseen entity types3 between source and target domains, we

3Seen entity type means that types appear in both source and target domains, and unseen entity type means that types

only appear in the target domain.
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Table 14. Macro-F1 Scores of Six Cross-Domain Pairs under Zero-Shot Scenarios

Source Target LUKE [56] DOZEN� [39] DOZEN [39]
DTrans-MPrompt

(Ours)

Science→
Literature 34.4 33.8 37.2 40.6

Music 26.1 28.8 28.4 37.1

Literature→
Science 26.8 31.6 32.7 34.5

Music 32.2 35.5 41.5 42.4

Music→
Science 22.7 25.3 26.5 28.9

Literature 49.5 44.5 48.5 49.1

Fig. 9. Performance of entity detection and type prediction sub-tasks over each entity category when trans-

ferring between the Science and Literature domains.

calculate the recall of entity span and F1 of entity type over each type in Figures 9, 10, and 11.
Because the entity type is unknown in the entity detection sub-task, we cannot get a precision
score for each type and then the recall rate is reported for the entity span. We can observe that
our DTrans-MPrompt achieves credible performance on both entity span and type for seen and
unseen types. Interestingly, the performance differences between seen and unseen types are lower
on entity span detection than type prediction. The reasonmay be that the entity detection sub-task
relies on grammar or syntactic information that is more generalized across domains, whereas en-
tity type information is domain-dependent. As shown in Figures 9, 10, and 11, unseen types which
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Fig. 10. Performance of entity detection and type prediction sub-tasks over each entity category when trans-

ferring between the Science and Music domains.

do not appear in the source domain can still be correctly classified to some extent. Additionally,
regardless of seen and unseen types, performances of entity span detection and type prediction
over several types (e.g., “literary genre”) are poor due to domain gap and entity type differences.
For example, the type “literary genre” generally refers to some abstract words, such as “novel” and
“literary criticism,” whereas most other types (e.g., book) generally refer to specific words, such
as “The Forsyte Saga” and “Aesop’s Fables.” The type differences lead to inferior performance on
entity span detection and type prediction under zero-shot scenarios.

4.6 Slot Filling Task (RQ4)

In this section, we evaluate the model performance on the slot filling task, which is also a classical
sequence labeling task, same as NER. As shown in Table 15 and Table 16, there are seven target
domains in total, and each domain serves as the target domain for test and the source domain is the
left six domains following the setup of other works [34, 58]. Table 15 shows few-shot cross-domain
transfer on 20 target-domain samples—that is, both the source domain and 20 target domain labeled
samples are available for training. Similarly, Table 16 shows few-shot cross-domain transfer on 50
target domain samples. The proposed method DTrans-MPrompt in this article achieves consistent
advantages over previous baselines on average.
DTrans-SMix and DTrans-MPrompt both follow the divide-and-transfer paradigm that per-

forms task decomposition for NER and devises corresponding transfer strategies in each sub-task.
Compared with our previously published DTrans-SMix [65], DTrans-MPrompt proposed in this
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Fig. 11. Performance of entity detection and type prediction sub-tasks over each entity category when trans-

ferring between Literature and Music domains.

Table 15. Cross-Domain F1 Scores on the SNIPS Dataset for Different Target Domains under 20

Few-Shot Samples

Domain
Method

CT [13] RZT [46] Coach [34] AISFG [58]
DTrans (Ours)

SMix MPrompt

AddToPlaylist 58.36 63.18 62.76 81.64 76.50 84.54

BookRestaurant 45.65 50.54 65.97 78.06 81.05 82.67

GetWeather 54.22 58.86 67.89 82.68 88.78 85.65
PlayMusic 46.35 47.20 54.04 77.59 71.81 74.45
RateBook 64.37 63.33 74.68 79.06 77.18 93.54

SearchCreativeWork 57.83 63.39 57.19 71.95 73.45 75.33

SearchScreeningEvent 48.59 49.18 67.38 73.91 69.72 88.84

Average 53.62 56.53 64.27 77.84 76.93 83.57

Bold marks the highest number among all methods.

article has further remarkable advantages on the slot filling task, as shown in Table 15 and
Table 16. The reason is that slot types are precise and highly similar (e.g., slot type “playlist” and
“music item”), and DTrans-MPrompt can probe the knowledge from PLM, exploit label correlation,
and reduce the domain gap by the unified prediction form. By comparison, DTrans-SMix is
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Table 16. Cross-Domain F1 Scores on the SNIPS Dataset for Different Target Domains under 50

Few-Shot Samples

Domain
Method

CT [13] RZT [46] Coach [34] AISFG [58]
DTrans (Ours)

SMix MPrompt

AddToPlaylist 68.69 74.89 74.68 83.51 77.93 88.66

BookRestaurant 54.22 54.49 74.82 84.60 83.17 86.11

GetWeather 63.23 58.87 79.64 83.73 88.74 89.33

PlayMusic 54.32 59.20 66.38 78.79 75.31 80.55

RateBook 76.45 76.87 84.62 92.85 85.10 95.32

SearchCreativeWork 66.38 67.81 64.56 76.00 73.77 78.30

SearchScreeningEvent 70.67 74.58 83.85 91.29 83.02 94.09

Average 64.85 66.67 75.51 84.39 81.01 87.48

Bold marks the highest number among all methods.

based on a classification head for type prediction and cannot capture the label correlation.
Additionally, we see that DTrans-SMix shows a significant advantage in the “GetWeather” target
domain under few-shot learning with 20 samples. The reason may be that the GetWeather

domain possesses more common slot types (e.g., “city,” “country,” “state,” and “time range”) across
domains, and classification head based type prediction also achieves promising performance,
and intermediate domain augmentation for type prediction effectively narrows the domain
discrepancy. For the “PlayMusic” domain with 20 few-shot samples, AISFG [58] achieves the
SOTA because of its tailor-designed template including domain descriptions, slot descriptions,
and examples with context. As slot type “album” and “sort” have a similar context pattern—for
example, getting ready in play the getting ready by eason chan is an album slot type, whereas

shall we talk in play shall we talk by eason chan is a sort slot type—AISFG [58] using the

template by incorporating some examples with context may untangle the confusion caused by
the similar context pattern between different slot types and then shows the superiority under
the few-shot learning with 20 samples. Overall, the proposed DTrans-MPrompt in this article
achieves the new SOTA on the cross-domain slot filling task under few-shot learning settings due
to the disentanglement of slot boundary and type information with corresponding cross-domain
transfer strategies for each slot information. In the future, incorporating the slot descriptions into
prompt-tuning may further improve the performance owing to more precise modeling of slot
type semantics.

5 CONCLUSION AND FUTURE WORK

This article explored the efficacy of the divide-and-transfer paradigm in cross-domain NER.
We divided the NER task into entity detection and type prediction sub-tasks to disentangle
the coupled information existing in the sequence labeling framework, then designed the corre-
sponding transfer strategies in each sub-task. Extensive experiments demonstrated its notable
effect, which provides a new perspective on cross-domain NER. Additionally, we extended our
frameworks to a wider range of application scenarios, such as the target domain with few-shot
and zero-shot samples, which confirms the significant advantages of the formally summarized
paradigm and instantiated framework in this article. For future work, interactions and result
combinations between two sub-tasks need better solutions for unleashing the greater potential
of the divide-and-transfer paradigm. The divide-and-transfer paradigm for LLMs (e.g., ChatGPT)
also needs further exploration thereafter.
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