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ABSTRACT 
Extracting structured information from all manner of webpages is 
an important problem with the potential to automate many real-
world applications. Recent work has shown the efectiveness of 
leveraging DOM trees and pre-trained language models to describe 
and encode webpages. However, they typically optimize the model 
to learn the semantic co-occurrence of elements and labels in the 
same webpage, thus their efectiveness depends on sufcient labeled 
data, which is labor-intensive. In this paper, we further observe 
structural co-occurrences in diferent webpages of the same website: 
the same position in the DOM tree usually plays the same semantic 
role, and the DOM nodes in this position also share similar surface 
forms. Motivated by this, we propose a novel method, Structor, 
to efectively incorporate the structural co-occurrences over DOM 
tree and surface form into pre-trained language models. Such struc-
tural co-occurrences help the model learn the task better under 
low-resource settings, and we study two challenging experimental 
scenarios: website-level low-resource setting and webpage-level 
low-resource setting, to evaluate our approach. Extensive exper-
iments on the public SWDE dataset show that Structor signif-
cantly outperforms the state-of-the-art models in both settings, and 
even achieves three times the performance of the strong baseline 
model in the case of extreme lack of training data. 

CCS CONCEPTS 
• Information systems → Web mining; Data extraction and 
integration. 
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1 INTRODUCTION 
As the web is the largest knowledge base ever built by humans, web 
data extraction has gained the attention of researchers for more than 
twenty years [25, 41, 42], which in turn has various downstream 
applications such as knowledge-aware question answering [8, 34], 
information retrieval [2, 20], and recommendation systems [9, 29]. 
Typically, structured web data extraction systems focus on identify-
ing attributes of interest for a topic entity from detail pages. A detail 
page denotes a webpage that presents a single data record, like a 
book in an online bookstore or a product in an e-commerce web-
site [11, 21]. In contrast to text-intensive documents, such as essays, 
news reports, and legal contracts that are composed of grammatical 
sentences, text contents on webpages are often text fragments and 
not strictly grammatical. As a result, traditional natural language 
processing techniques are no longer directly applicable. Consider-
ing that the vast majority of web content is organized and exposed 
in HTML format, which also distinguishes the webpages from nat-
ural texts [4], it is a non-trivial task to extract structured data from 
webpages that are rendered with various HTML templates. 

Indeed, the main goal of HTML is to support the logical presen-
tation of web content, which brings new opportunities that are not 
available in natural texts. In particular, it is important to observe 
that detail pages from the same website usually share similar logical 
presentations and HTML templates. Take Figure 1 as an example, 
the right side shows two screenshots from Amazon.com, which are 
rendered to display in browser based on two source records and 
a shared DOM tree (a tree that describes the logical structure of 
webpages, as shown in the left side). The goal of structured web 
data extraction is to recognize attributes such as {title, author, 
publisher, publication date, isbn13} from these pages. An intu-
itive solution is to frst distinguish webpages generated by diferent 
templates, and then learn an extractor for each template [5, 16, 39]. 
However, one major limitation is that they are supervised methods 
and require manual efort in preparing training examples for each 
template. Moreover, the learned extractor is not suitable for the 
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unseen website with unseen templates, thus considerable human 
eforts are required for either periodically updating templates or 
annotating unseen websites. In this work, we are interested in a 
scalable approach that is able to reduce expensive human eforts 
and extract attributes from unseen websites. 

Modern neural networks learn from massive training data and 
achieve great generalization and robustness in many felds, while 
the subtext of limited labeled data is unsatisfactory performance [12]. 
In contrast, human beings have excellent transfer learning talent in 
low-resource scenarios, since humans learn the co-occurrences of 
data on the basis of understanding semantics and then abstract them 
into rules [37, 38]. When extracting attributes from webpages, it is 
easy to fnd that HTML elements playing the same semantic role 
in diferent webpages are often in the same position. For example, 
"978-0590353403" and "978-0152023980" in Figure 1 are both isbn13 
(International Standard Book Number), and located in the lower 
right corner. Another important fnding is that elements in the same 
position also share similar surface, since when presenting specifc 
semantic roles, the human consensus is to follow conventional ex-
pression patterns, especially for some date- and number-related 
felds. Back to the example above, we can roughly sum up that 
isbn13 contains 13 digits, and there is a hyphen between the third 
and fourth digits. Now imagine that if a digital sequence matching 
this pattern also appears in the lower right corner of a webpage, 
we can infer that it is very likely to be isbn13 of a book based on 
the two cases, even if we have never seen this sequence before. 
Such ability to summarize rules is the key for human beings to deal 
with low-resource scenarios better than neural networks. We name 
these two kinds of rules as structural co-occurrences over DOM tree 
and surface form respectively, because they go beyond the previ-
ous methods, which only optimize the semantic co-occurrences 
between elements and labels in a single web page, while we make 
more in-depth use of the shared cross-webpage DOM tree structure 
and element surface structure. 

Motivated by the above observation, in this paper, we propose 
Structor to learn structural co-occurrences for structured web 
data extraction. We employ the pre-trained MarkupLM [19], a lan-
guage model for webpages with a BERT-like architecture [7], as the 
base encoder to beneft from the pre-training process with rich and 
varied webpages. DOM nodes in a webpage are concatenated into a 
long sequence and sent into the encoder. To leverage the structural 
co-occurrence over DOM tree, for each DOM node, we retrieve a 
node in the same position from another DOM tree (i.e., another 
webpage) on the same website, and then incorporate it into the 
input sequence. To ensure that the inserted node does not interfere 
with the semantics of the original sequence, a semantic position 
embedding working in the embedding layer and a visible matrix 
working in the transformer layer are introduced. For the structural 
co-occurrence over surface form, we approximate the character 
patterns of DOM nodes by regular expressions and integrate them 
into the logits generated by neural networks. Although the context 
representation output by the encoder contains rich semantic infor-
mation, we believe the surface forms containing many indicative 
signals are also the focuses of human attention. 

We consider two challenging experimental scenarios in this pa-
per, (i) website-level low-resource setting, where we learn a model 

Figure 1: The schematic diagram of structural co-occurrence, 
where elements at the same position in one website play sim-
ilar semantic roles and follow similar surface forms. The left 
part plots a DOM tree and the right displays two correspond-
ing rendered webpages from Amazon.com. 

with a few labeled seed websites and predict on other unseen web-
sites from the same vertical, (ii) webpage-level low-resource setting, 
where we train a model with very limited labeled webpages from 
one website and do the same test process above. The frst setting 
focuses on the transferability among websites and reduces the hu-
man eforts in scale, while the second assesses the efectiveness of 
the transferable model when lacking training data. 

In summary, the main contributions of this paper include: 
• To our best knowledge, it is the frst work that efciently 
exploits the structural co-occurrences over DOM tree and 
surface form for structured web data extraction. 

• We are also the frst to study the performance when reducing 
human eforts of data annotation in training stage. 

• Extensive experiments on the public dataset, SWDE, show 
that Structor signifcantly outperforms the state-of-the-art 
methods, especially on the webpage-level setting. 

Typesetting. In this paper, we use bold italic for the frst appear-
ance of a concept like DOM tree, italic surrounded by quotations 
for words in the webpages like "J.K. Rolling". Courier typeface sur-
rounded by x"" for XPaths like x"/html/.../div[2]/a" and r"" 
for regular expressions like r"^978-\d{10}$". 

2 PRELIMINARIES 
In this section, we frst describe the structured web data extraction 
problem formally, and then introduce two kinds of structural co-
occurrences in semi-structured webpages. 

2.1 Problem Formulation 
Here, we prefer to learn a transferable model for the structured web 
data extraction problem. Formally, each vertical (a.k.a. domain) � 
corresponds to a set of interesting atributes A� (e.g., A���� = 
{title, author, publisher, publication date, isbn13}) and a 
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group of websites W� , where all the websites in a vertical share 
the same attribute set. Each website ��� is composed of a collection 
of webpages which share a similar layout structure. Each webpage 
describes a single topic entity and can be parsed to a DOM tree. 
The extraction task is typically formulated as node classifcation on 
the DOM tree [11]. Look at the right part of Figure 1, each element 
we can view in the browser corresponds to a DOM node. Note that 
a DOM tree contains a variable node set, a fxed node set, and a 
non-text node set. Fixed nodes remain the same across diferent 
detail pages on the same website while variable nodes may contain 
diferent text contents. Following the convention in structured web 
data extraction [11], we assume a node corresponds to at most one 
attribute-type, and narrow down the search range to variable nodes 
because the attribute values should vary in diferent pages. 

2.1.1 Website-Level Low-Resource Seting. Given a small set of an-
notated seed websites {�

�
� 
1, �

�
�2, ...,�

� } for a vertical � , we aim to 
�� 

learn a transferable model M to extract attributes from a lager set 
of unseen websites {��

�1, �
�
�2, ...,�

� } in the same vertical. It focuses 
� � 

on scalability in practical applications and is also the conventional 
setting in structured web data extraction [11, 21]. 

2.1.2 Webpage-Level Low-Resource Seting. In this scenario, we 
hope to further reduce the human cost, because the website-level 
setting still requires a lot of manpower to collect, clean, and label 
thousands of webpages. To reduce the labeling cost in the training 
stage, we leverage very limited annotated webpages (less than 100) 
from only one website to learn M and extract attributes from unseen 
websites in the same vertical. It is abstracted from the real scenario 
that a task needs to be annotated from scratch. 

2.2 Structural Co-occurrences 
Before introducing structural co-occurrences in webpages, we frst 
clarify several related concepts. Unlike plain text with natural lan-
guage, HTML (Hyper-Text Markup-Language) is the standard lan-
guage for documents designed to be displayed in web browsers, 
and DOM (Document Object Model) tree is the tree structure object 
of markup-language-based documents (e.g., webpages) wherein 
each DOM node corresponds to an HTML element. XPath (XML 
Path Language) is a query language for selecting elements from 
markup-language-based documents and can be used to uniquely 
locate a DOM node based on the DOM tree. In a typical XPath 
expression, like "/html/body/div[7]/li[5]/span[0]", the texts 
stand for the tag names while the subscripts are the ordinals when 
multiple nodes have the same tag name under a common parent 
node. We show an example of the DOM tree along with XPaths in 
Figure 1, from which we can identify the genealogy of all nodes 
within the document, as well as their XPath expressions. 

2.2.1 Structural Co-occurrence over DOM Tree. In Figure 1, one 
obvious phenomenon is that webpages on the same website usually 
share a similar logical structure. The underlying principle is that 
in the process of website development, webpages are generated 
by flling diferent records in the same HTML template. There-
fore, these webpages also share a similar DOM tree, and DOM 
nodes with the same XPath play similar semantic roles. Specifcally, 
"J.K. Rolling" and "Antoine de Saint-Exupery" share the same XPath 
x"/html/.../div[2]/a", so if we already know that "J.K. Rolling" 

is the author of "Harry Potter"1, we can easily infer that "Antoine 
de Saint-Exupery" in the same position is the author of "The Little 
Prince", even if we may not have any knowledge about him before. 
In other words, when predicting the attribute-type of "Antoine de 
Saint-Exupery", it is feasible to leverage the relevant information of 
"J.K. Rolling". We name such nodes that share the same XPath in 
diferent webpages as Peer nodes. 

2.2.2 Structural Co-occurrence over Surface Form. When looking 
from DOM tree to DOM node, it is not difcult to fnd that DOM 
nodes with the same semantic roles also have similar surface forms, 
especially for dates and numbers. For example, "October 1, 1998" 
and "May 15, 2000" in Figure 1 are publication date for their topic 
entities, "978-0590353403" and "978-0152023980" are isbn13. They 
all follow some underlying character patterns, which are also the 
convention when people express specifc types of knowledge and 
could be well approximated by RegExs (Regular Expressions) [35]. 
Specifcally, r/^month\s\d{1,2}\,\s\d{4}$/2 describes the date-
type string and isbn13 follows the r/^\d{3}-\d{10}$/ pattern. 
This kind of knowledge is shared by all websites in the vertical, 
within and throughout all the webpages. 

3 MODEL ARCHITECTURE 
This section lays out Structor, a transformer-based model with 
structural co-occurrences, and introduces the details of each module. 
Firstly, we expound on our main motivation: 

Motivation. Inspired by the great successes of pre-training/fne-
tuning paradigm in low-resource NLP tasks [17, 30], we employ 
pre-trained MarkupLM [19] as the base encoder of webpages. To 
make full use of the structural co-occurrence over DOM tree, we 
frst retrieve peer nodes with the same XPath for each variable node 
and splice them into input sequence. Then, we replace the default 
physical position embedding in input layer as semantic position 
embedding, and introduce a visible matrix to control the informa-
tion propagation in transformer layer. In this way, the spliced peer 
nodes from other webpages are only associated with corresponding 
variable nodes, and do not afect the semantics of other tokens in 
the input sequence. Considering that human beings fully consider 
the character pattern of a string when understanding its semantic 
roles, we integrate the structural co-occurrence over surface form 
in the prediction stage. We collect and develop a series of regular 
expressions for each attribute type, and hypothesize that matching 
regular expressions is a necessary condition for the fnal prediction. 
In other words, only when a DOM node matches the specifc regu-
lar expressions can it be corresponding attribute type. Throughout 
the whole process, there are no new parameters that need to be 
optimized from scratch, so the proposed approach is theoretically 
suitable for scenarios with limited training data. 

3.1 Webpage Encoder with XPath 
The webpage encoder is based on MarkupLM [19], a transformer-
based model with XPath embedding, and also includes three key 
adaptations to integrate structural co-occurrence over DOM tree: 

1We abbreviate "Harry Potter and the Sorcerer’s Stone (1)" as "Harry Potter" for brevity. 
2We follow the standard RegEx grammar (https://en.wikipedia.org/wiki/Regular_ 
expression) and use "month" to denote twelve months (January, February, ... ). 
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Figure 2: The architecture of webpage encoder. Variable nodes in the input sequence are extended by peer nodes. We leverage 
semantic position and visible matrix to make the introduced peer nodes only act on corresponding variable nodes. The semantic 
position (red number) ensures that the extension does not change the semantics of original input sequence. The visible matrix 
is multiplied by the attention weight matrix to realize the blocking and interaction of information. 

i.e., input sequence with peer node, embedding layer with semantic
position, and transformer layer with visible matrix. Figure 2 shows
the architecture of webpage encoder.

3.1.1 Base Encoder with XPath. To take advantage of existing pre-
trained models and adapt to markup-language-based webpage tasks, 
MarkupLM [19] follows the BERT [7] architecture and introduce 
XPath embedding to the original embedding layer. 

For the �-th input token �� , the XPath expression is split by "/",
so as to obtain unit information at each level  [(�� , 0 �

� � �
0), ...(� , � )]  �� �  

,
where �� is the

�

 max depth of XPath and (�� , �� )   
� � denotes the tag

name and subscript of the XPath unit on level � . To convert XPath 
expression into XPath embedding, ��  ��     �

� and � are input into the -th
tag embedding layer and subscript embedding layer, respectively, 
and added up to get the �-th unit embedding �� 

� ,
��  = ������� � (�  �) + ������ � (� )� � � . (1) 

Next, all the unit embeddings are concatenated and fed into a
feed-forward layer to get the final XPath embedding 𝑥𝑝𝑖 ,( [ ] )

𝑥𝑝𝑖 =
𝑖 𝑖𝑊𝑝 𝑢0;

𝑖𝑢1; ...;𝑢 +𝑛 𝑏
𝑢 𝑝 , (2)

where𝑊 R𝑑 ×∈ ℎ 𝑛𝑢𝑑𝑢
𝑝 and 𝑏𝑝 ∈ R𝑑ℎ denotes the weight and bias

of linear transformation, 𝑑𝑢 and 𝑑ℎ denotes the dimension of unit
embedding and XPath embedding, respectively.

For more details about XPath embedding and pre-training pro-
cess, we recommend readers refer to the original paper [19], The
next three adaptations are exactly the focus of our webpage encoder.

3.1.2 Input Sequence with Peer Node. There are usually thousands
of nodes in one webpage, and some nodes are definitely not of
interest to us. An intuitive idea is to only focus on variable nodes in
the webpage instead of sending all nodes into the model, to avoid
meaningless computational overhead, but it does not mean that

the fxed nodes are useless for the problem. Take the "Harry Potter"
webpage as example again, the preceding node "Publication Date" of
"October 1, 1998" even directly indicates its attribute type. Therefore,
when converting a webpage into an input sequence, we reserve 
a certain number of preceding nodes (either fx or variable node) 
before each variable node to enrich the overall semantics. It is also 
a conventional preprocessing when solving structured web data 
extraction in the era of deep learning [19, 21, 40]. 

Inspired by the process of enabling BERT representation with 
knowledge graph [22], we enhance the representation of variable 
nodes by integrating their peer nodes. For each variable node, we 
collect a peer node set N� to store nodes from all webpages with
the same XPath. Note that for any two nodes �� and � � in N� , �� is
the peer node of � � , and vice versa. Next, we randomly select ��
peer nodes from N� (�� = 1 in default), then paste it behind the
variable node. Finally, the sequence sent into the transformer-based 
model is as follows, 

���� ���� [���], ...,��� ,���� ,��� , ..., [���], (3)
� � 

���� ���� where ��� , ���� , ��� , denote the tokens of preceding node,
� �

variable node and peer node, respectively. 

3.1.3 Embedding Layer with Semantic Position. Similar to Marku-
pLM, we generate the input features by summing up token embed-
ding, XPath embedding, and position embedding. For a transformer-
based model, if there is no position embedding, it will be equivalent 
to a bag-of-word model, resulting in a lack of sequential information 
(i.e., the order of tokens). However, unlike common input sequences 
from the same document, the extended sequence with peer nodes 
contains a lot of information from other webpages, and the physical 
position is bound to cause information confusion. Therefore, how to 
distinguish inserted tokens while retaining the original sequential 
information is the key to position embedding. 
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All the sequential information of transformer-based models is 
contained in the position embedding, which allows us to introduce 
a semantic position to modify the physical position of tokens from 
peer nodes. Figure 2 shows a vivid example of the input sequence 
and semantic position, after attached tokens from peer nodes, "The
Little Prince" are inserted after "Harry Potter", but the book pub-
lished on "Oct 1 1998" should be "Harry Potter" instead of "The Little
Prince". To solve this problem, we set the position number of "Pub.
Date" to 3, 4 instead of 6, 7. So when calculating attention score
in the transformer, "Pub." is at the next position of "Potter" by the
equivalent. However, another problem arises, the index of "Pub."
and "The" are both 3, which makes them close in position when cal-
culating self-attention, but in fact, there is no connection between 
them. The solution to this problem is to introduce a visible matrix 
in the transformer layer, which is covered next. 

3.1.4 Transformer Layer with Visible Matrix. The extended se-
quence contains knowledge from peer nodes, which helps the model 
understand the semantic role of input tokens. However, the risk 
raised with peer nodes is that it can lead to changes in the meaning 
of original sequence. For example in Figure 2, "The Little Prince" is
only related to "Harry Potter" and has nothing to do with "Sep. 22
2001", so the representation of "Oct. 1 1998" should not be afected
by "The Little Prince". Besides, the "[CLS]" token summarizing the
whole sequence should not bypass "Harry Potter" to get the infor-
mation of "The Little Prince", as this would bring semantic changes.
To prevent the risk from happening, we introduce a visible matrix 
� �∈ R � ×�� (�� is the length of input sequence) to limit the visible
area of each token so that "The Little Prince" and "Sep. 22 2001",
"[CLS]" and "The Little Prince" are not visible to each other,{

0, 𝑡𝑖 ⇔ 𝑡 𝑗 ,
𝑀𝑖 𝑗 = (4)−∞, 𝑡𝑖 ⇎ 𝑡 𝑗 ,

where �� ⇔ � � indicates that �� and � � are tokens from the original
input sequence or two peer nodes (i.e. visible to each other), while 
�� ⇎ � � are not, � and � are physical position indexes.

Typical transformer-based models (e.g., BERT, MarkupLM) lever-
age a fully-connected attention map to measure pairwise inter-
action between tokens. To prevent the false semantic changes, a 
straightforward operation is to modify the attention map by � , 

�� +1, � � +1,� � +1 = � � �� ��, � �� , � ��, (5) ( 
𝑙 1 ⊤ )
+ +1 +𝑙+1 softmax

𝑄 𝐾𝑙 𝑀 𝑙+1𝐻 = √︁ 𝑉 , (6)
𝑑𝑘

where𝑊 ,𝑊 , and𝑊 𝑑ℎ×𝑑ℎ
𝑄 𝐾 𝑉 are trainable parameterswith shapeR .

𝐻 𝑙 is the hidden states of the 𝑙-th transformer layer. 𝑑𝑘 is the scaling
factor. Intuitively, if 𝑡𝑖 is invisible to 𝑡 𝑗 , 𝑀𝑖 𝑗 masks the attention
score to 0, which means 𝑡𝑖 makes no contribution to 𝑡 𝑗 .

3.2 Attribute Predictor with RegEx
The webpage encoder generates a context representations for each
input token. Instead of directly input them into the classifier, we
introduce how to predict the attribute type for each variable node
with structural co-occurrence over surface form in this section.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Figure 3: The overview of attribute predictor. The neural 
networks model the semantic of input node while the regular 
expressions capture surface forms. We show representative 
RegExs for publication date and isbn13, in which the input 
node only matches isbn13, so as to fx the prediction. 

3.2.1 RegEx Collection. Regular expression is an algebraic nota-
tion used to describe specifc patterns we want to match, which 
search through the sequence and return all texts meeting the pat-
tern. When taking the extraction task as an attribute classifcation 
problem, regular expressions facilitate human experts to encode 
world knowledge about specifc attribute types, especially for date-
and number-related attributes. Specifcally, we frst collect regular 
expressions from RegEx Library3, then summarize and supplement
them manually, and fnally get at least one and at most fve expres-
sions for each attribute. The collection process follows two princi-
ples, pattern matching and keyword matching. Pattern matching 
requires the sequence to strictly match the specifc pattern, mainly 
for attributes with fxed form (e.g., date, phone) or without strict 
regularity (e.g., name, company). By comparison, keyword match-
ing is hoped that the hit of keywords brings some positive signals 
to type judgment. For example, "press" and "book" are some iconic
keywords for publisher. 

3.2.2 Classification Layer with RegEx. With hidden states output 
by the last layer of transformers, neural-based methods typically 
utilize a classifcation layer with softmax to obtain the probability of 
each attribute. For the �-th token, the predicted attribute distribution 
of neural networks is, 

������� = ��ℎ
� (7)� + ��,

�� = sofmax(������� ), (8) 
�� = arg max(�� ) . (9) 

∈ R�ℎ ×�� where �� and � ∈ R�� are trainable parameters, �� is
the size of pre-defned attribute set. ������� is the logit generated by
neural networks. Obviously, the process only fts training data at 
semantic level, neglecting the structural co-occurrence over surface 
form, which sometimes falls into factual errors, such as predicting 
a digit string "978-0590353403" into publication date.
3https://regexlib.com
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To take the surface form into consideration, for each DOM node, 
we check whether it matches regular expressions one by one and 
record the result as a 0-1 vector �  ∈ R�� �� 

� , where �� = 5 is the
maximum of regular expression for each attribute, 0 represents mis-
match and 1 represents match. Next, a 0-1 matrix �  ∈ R�� �� ×�� 

�

is introduced to map the results �� to corresponding attributes,

������� = �� �� (10) 

However, there are two obstacles to combining the logits gen-
erated by neural networks and regular expression. As shown in 
Figure 3, the frst is that ������� predicted by neural networks and
the 0-1 vector ������� are not on the same scale. Thus we propose to
adaptively scale ������� in Equation 11, so that ������� could make
efective corrections to the false predictions of ������� ,

������� ← (max(������� ) − min(������� )) · ������� (11) 

The second obstacle is that regular expressions may not cover all 
cases, since data in real scenes are quite diverse and complex. Here 
we use an indicator function to measure the confdence of ������� ,
and only use ������� to update the predictions with low confdence.
Otherwise, we directly output the prediction of neural network,{

𝑟𝑙𝑜𝑔𝑖𝑡𝑖 , 𝐸 (𝑝𝑖 ) > 𝛿 & 𝐸 (𝑝𝑖 )
= 𝑙 > 𝛿𝑔,I𝑟 (𝑟𝑙𝑜𝑔𝑖𝑡𝑖 ) (12)0, other,∑︁

𝑖 𝑖𝐸 (𝑝𝑖 ) = − 𝑝 ,𝑗 log𝑝 𝑗 (13)
𝑗

where � (�� ) is the entropy of original predicted distribution, and a
large entropy means low confdence, �� is the local threshold and
set as a hyper-parameter, �� is the global threshold and set as the
average entropy of all predictions in the input sequence. In other 
words, if the entropy of a prediction is high enough locally and 
globally, we update the prediction with RegEx knowledge. Finally, 
the prediction process (Equation 8) is modifed to, 

�� = sofmax(������� + I� (������� )), (14) 

4 EXPERIMENTS 
In this section, we frstly introduce the experimental dataset and 
implementation details. Then, a collection of baseline models are 
included to compare with our model under the website-level and 
webpage-level low-resource settings. 

4.1 Experimental Setup 
4.1.1 Dataset. We carry out the publicly accessible Structured 
Web Data Extraction (SWDE) dataset [11] for all evaluation tasks, 
which has 8 verticals and 10 websites for each vertical4. Since
there is no ofcial train-test split for SWDE, in the website-level low-
resource experiments, we follow the conventional setting [19, 21, 40]
to randomly select � seed websites as training data and use the 
remaining 10 − � websites as the test set. In the webpage-level low-
resource experiments, only a few labeled webpages from one website
can be accessed in the training stage, and the test stage is carried 
out on all pages of the remaining nine websites. Diferent with the
website-level setting, we leverage � to denote the seed webpages 
used in the training stage, and the value of � is [10, 20, 50, 100]. 

4see also Table 4 in Appendix for the statistics of SWDE. 

Table 1: Comparing performance of six baseline methods to 
Structor with diferent numbers of seed websites. Each entry 
is the mean value on all 8 verticals and 10 permutations of 
seed websites, thus 80 experiments in total. 

Model \ #Seed Sites � = 1 � = 2 � = 3 � = 4 � = 5 

SSM [3] 63.00 64.50 69.20 71.90 74.10 
Render-Full [11] 84.30 86.00 86.80 88.40 88.60 
FreeDOM-NL [21] 72.52 81.33 86.44 88.55 90.28 
FreeDOM-Full [21] 82.32 86.36 90.49 91.29 92.56 

LANTERN [40] 83.06 88.96 91.63 92.84 93.75 

MarkupLM [19] 82.11 91.29 94.42 95.31 95.89 
Structor 84.48 92.12 95.03 95.79 96.08 

Obviously, the same website or webpage is never present in training 
and test data in any experiment. 

54.1.2 Implementation Details. We implement  Structor with trans-
formers 6 [31] and the pre-trained markuplm-base  model. We fol-
low the same data pre/post-processing, develop environment and 
hyper-parameter setting as in MarkupLM [19] for fair composition. 
Specially, we carry out the webpage-level low-resource experiments 
with only one NVIDIA V100 GPU to alleviate the data coefcient 
problem (when � is small, if multiple GPUs are used, the average 
data allocated to each GPU is much lower than the set batch size). 
Besides, the number of peer nodes for each variable node is set to 1 
for efciency reasons, the local threshold in �� Attribute Predictor
is set to 0.1 (chosen from {0.01, 0.05, 0.1, 0.2}). 

We evaluate predicted attribute values with the true values for 
each detail page and then compute the average F1 score over all 
websites/verticals. In both two settings, we take cyclic permutations 
after fxing an order within the websites for each vertical, thus the 
fnal result per vertical is obtained by taking the average of all 10 
permutations of seed websites for each � . 

4.1.3 Compared Baselines. In the website-level low-resource set-
ting, we compare Structor against recent representative base-
lines7, including Stacked Skews Model (SSM [3]), Relational Neu-
ral Model (Render [11]), Relational Neural Model (FreeDOM [21]), 
Simplifed DOM Model (LANTERN [40]), and Pre-trained Language 
Model (MarkupLM [19]). In the webpage-level setting, we reimple-
ment the latest open-source work MarkupLM as the strongest base-
line, which is also the base encoder of our model. Another key com-
ponent of Structor is RegEx, but a candidate feld might match 
multiple regular expressions of multiple attributes, that is, the at-
tribute cannot be determined, so RegEx cannot be treated as an in-
dependent evaluable baseline method. Recently, there are also some 
other works on SWDE, such as DOM-LM [6] and WebFormer [27], but 
they reorganized the data to focus on the performance under full 
training, and therefore is not considered in this paper. 

4.2 Website-Level Low-Resource Setting 
We frst compare the performance of all baselines and Structor 
with diferent numbers of seed websites. Then, we conduct two sets 
of analyses to verify the efectiveness of our design choices. 
5https://github.com/zzysay/structor
6https://huggingface.co/microsoft/markuplm-base
7see also Appendix for detailed descriptions of baselines. 
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Table 2: The detailed performance of Structor of using dif-
ferent numbers of seed websites in diferent verticals. Each 
entry is the mean value of 10 permutations of seed websites. 

Vertical \ #Seed Sites � = 1 � = 2 � = 3 � = 4 � = 5 

Auto 75.75 88.94 94.30 95.35 97.40 
Book 79.99 86.80 90.23 90.66 90.21 
Camera 90.24 93.71 95.67 96.92 97.03 
Job 75.27 86.48 90.95 90.40 91.14 

Movie 85.79 95.66 98.28 99.02 98.86 
NBA Player 92.06 94.31 95.76 96.68 96.69 
Restaurant 87.09 94.62 97.09 98.82 98.57 
University 89.67 96.42 97.91 98.51 98.77 

Average 84.48 92.12 95.03 95.79 96.08 

Figure 4: Performance analysis about model modules and 
peer nodes. Best view in color. Here we take NBA Player, the 
vertical with the least amount of data, as an example and the 
remaining seven verticals share the similar tendency. 

4.2.1 Main Results. In Table 1, we show the overall comparison 
between our Structor and baselines using diferent numbers of 
seed websites. Our model consistently outperforms the state-of-
the-art strong baselines and obtains the largest performance lift 
compared with MarkupLM when �=1 (i.e., train on only 1 website 
and infer on the other 9 websites). We believe that when the amount 
of training data is relatively small, the two kinds of structural co-
occurrences we introduced ensure the lower limit of performance. 
In contrast, when more data join the training process, MarkupLM is 
also able to learn the regular patterns from the data, which overlaps 
with our structural co-occurrences to some extent. 

We also report the detailed performance of Structor in Table 2. 
The absolute improvement on F1 increases all the way to using 5 
seed websites with gradually diminishing improvements. It is not 
surprising because more training data obtain better coverage of 
all possible instances, while the model becomes more robust and 
less new knowledge can be transferred from annotated websites to 
unseen websites when there is enough training data. 

4.2.2 Ablation Study. To concretely examine the efectiveness of 
our design philosophy, we demonstrate ablation studies on difer-
ent modules of Structor. As shown in Figure 4(a), both structural 
co-occurrence over DOM tree and surface form (i.e., -Peer./ -RegEx) 
make important contributions to the fnal performance. We con-
clude that the peer nodes provide strong auxiliary information for 
attribute prediction, and the combination of regular expressions 
and neural networks allows us to exploit the conciseness and efec-
tiveness of regular expressions and the strong generalization ability 
of neural networks. Apart from that, we also test the importance of 
associated components when applying structural co-occurrences. 

Table 3: Comparing performance of MarkupLM to Structor 
with diferent number of seed webpages. Each entry is the 
mean value of 5 independent sub-samples and 10 permuta-
tions, thus 50 experiments in total. 

Vertical \ #Seed Pages � = 10 � = 20 � = 50 � = 100 

LANTERN 51.08 65.87 69.38 70.55 
Auto MarkupLM 11.53 41.62 63.29 69.10 

Structor 52.41 61.42 68.86 70.23 

LANTERN 27.12 29.60 49.90 58.41 
Book MarkupLM 8.71 22.81 56.19 70.93 

Structor 50.10 60.40 69.75 71.56 

LANTERN 67.61 62.88 76.00 81.20 
Camera MarkupLM 30.38 65.42 79.49 82.58 

Structor 67.45 77.49 84.27 87.43 

LANTERN 52.84 56.95 71.99 73.03 
Job MarkupLM 17.76 25.00 55.24 69.23 

Structor 46.97 59.04 62.59 71.56 

LANTERN 36.66 49.27 57.33 63.06 
Movie MarkupLM 7.99 24.25 69.75 82.02 

Structor 44.84 58.33 76.26 83.55 

LANTERN 39.55 42.55 49.81 62.02 
NBA Player MarkupLM 14.23 34.31 80.10 85.97 

Structor 63.25 78.56 87.85 89.91 

LANTERN 38.97 51.64 62.72 74.93 
Restaurant MarkupLM 19.04 33.54 68.29 77.93 

Structor 66.64 72.06 84.32 85.11 

LANTERN 38.18 52.13 67.91 72.04 
University MarkupLM 23.91 39.63 66.79 77.77 

Structor 65.17 79.66 82.48 85.23 

LANTERN 44.01 51.36 63.13 69.40 
Average MarkupLM 16.69 35.82 67.39 76.94 

Structor 57.10 68.37 77.04 80.57 

The results show that the semantic position and visible matrix (i.e., 
-Vis.) are very important because they maintain the structure and 
semantics of the input sequence. Similarly, the overall performance 
also decreases when ablating the indicator function (i.e., -Ind.), we 
hypothesize that arbitrarily fxing all the predictions degrades the 
neural network and makes it fall into local optimum. 

4.2.3 Peer Node Number Analysis. Although peer node brings rich 
semantic information, it extends the input sequence, so that in-
creases the overall computational cost. As shown in Figure 4(b), 
we conduct quantitative analysis and report the F1 scores and time 
costs with {0,1,2,3,4} peer nodes, in which the relative cost is re-
ported based on the cost of not using peer nodes (i.e., 0 peer nodes). 
When integrating more and more peer nodes, the computational 
cost increases monotonously while the performance frst increases 
and then decreases, because too many peer nodes might drown the 
semantics of input sequence, resulting in a negative impact. Besides, 
the performance lift brought by two peer nodes is relatively limited 
compared with one, Therefore, utilizing one peer node is a choice 
to balance performance and efciency. 

4.3 Webpage-Level Low-Resource Setting 
In this part, we test MarkupLM and Structor by varying the number 
of seed webpages from {10, 20, 50, 100} to show the impact of our 
approach in a more demanding low-resource scenario, assuming a 
task that needs to be annotated from the scratch. 
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Figure 5: Per-attribute performance comparisons between 
MarkupLM and Structor in the NBA Player vertical with dif-
ferent number of seed webpages. Numerical attributes like 
height and weight achieve the largest performance lifts. 

4.3.1 Main Results. Table 3 reports the detailed performance of 
MarkupLM and Structor with diferent number of seed webpages. 
The most striking fnding is that the performance of MarkupLM 
almost collapsed when the amount of training data is particularly 
limited (�≤10), while our Structor brings a quite amazing improve-
ment, even reaching three times the performance of the baseline 
model. We explain that in this case, the training data is not enough 
to adjust the model parameters, while the structural co-occurrence 
over DOM tree can be regarded as a data augmentation solution, 
and the structural co-occurrence over surface form helps correct a 
large number of false predictions. Moreover, Compared with the 
traditional methods of using about 2000 webpages (that is, �=1 in 
Table 2), Structor is also capable of achieving competitive perfor-
mance with only 100 seed webpages. It provides more imagination 
for the practical application of the proposed method in real world 
low-resource scenarios since the method greatly reduces the de-
mand of the model for training data. 

4.3.2 Per-Atribute Analysis. To access details of the indelible per-
formance improvement, we plot four histograms in Figure 5 to show 
the per-attribute performance comparison between MarkupLM and 
Structor in the NBA Player vertical. From the results, we conclude 
that Structor perform very well on all kinds of attributes, which 
means the proposed model learns gratifying semantic and structural 
co-occurrences. Furthermore, numerical attributes possess the most 
remarkable performance improvements, which we believe is a great 
success of regular expressions, because such numerical attributes 
usually have some fxed formats (e.g., height: 6’11”, weight: 220 
lbs.), and the philosophy of pattern matching when collecting regu-
lar expressions enables us to accurately capture possible attribute 
values. 

5 RELATED WORK 
Structured Web Data Extraction. Structured data extraction from 
web documents has drawn a lot of attention from the data mining 
research community [4, 32, 41, 42]. Traditional solutions [5, 10, 25] 

usually require a signifcant number of human-crafted rules or la-
bels for inducing a wrapper, which is not scalable if we wish to 
extract information from numerous websites. By contrast, Carlson 
et al. [3] and Hao et al. [11] propose to learn transferable models 
for the extraction of unseen websites without using new human 
annotations, but these rendering-based methods require carefully 
crafted heuristics around visual proximity to work well with ex-
pensive features. Recent works [19, 21, 40] focus on introducing 
neural networks into web extraction and incorporating with DOM 
trees. However, they lack a holistic view like humans and a large 
amount of training data is necessary to achieve promising results. 
In this paper, we consider an ambitious scenario. That is, to train 
a general enough model with limited human eforts and handle 
various webpages in one vertical without re-implementation. 

Language Model with External Knowledge. Many eforts are devoted 
to pre-trained language models for learning informative represen-
tations [7, 24, 26], some works also show that extra knowledge, 
such as facts in WikiData and WordNet, can further beneft the 
pre-trained models [18, 33, 36], but the embeddings of words in the 
text and entities in the knowledge base are not in the same space 
so that a cumbersome pre-training stage is required. Recently, K-
BERT [22] proposes a knowledge-enabled language model to handle 
the heterogeneous embedding space problem, and K-Adapter [28] 
introduces an adapter layer and clamps the pre-trained parameters 
in the knowledge infusion process. One major diference is that we 
systematically consider structural co-occurrences from the corpus 
rather than rely on a knowledge graph. Another unique aspect of 
this work is that the homogeneous knowledge is utilized plug-and-
play without any new parameters and pre-training process. 

Neural Network with Regular Expression. Regular expressions com-
plement the robustness of neural networks by providing control 
of a rule-based system [1, 13, 35]. Existing research studies have 
exploited the signifcance of regular expression in various natu-
ral language processing tasks, especially in the absence of enough 
training data [14, 15, 23]. However, they all give the collected reg-
ular expressions absolute confdence and incorporate them into 
neural networks without considering their accuracy. It is also our 
biggest diference from previous methods, that is, we doubt regular 
expressions and propose an entropy-based method to selectively 
update the prediction of neural network. 

6 CONCLUSION 
This paper explores a transferable manner of learning structural 
co-occurrences to reduce the human eforts of structured web data 
extraction. It is the frst attempt to leverage cross-webpage knowl-
edge to capture the relevance of elements from the perspective of 
logical position and surface form. This kind of meta information is 
able to be transferred across websites and can thus help solve the 
web data extraction problem. Extensive experiments show the efec-
tiveness of the proposed method, especially when the training data 
is extremely scarce. In the future, world knowledge will be taken 
into account as long as a public knowledge graph of that verticals 
can be easily accessed, we also plan to develop a unifed model that 
is able to adaptively accept new attributes and extract structured 
knowledge for all verticals without training from scratch. 
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APPENDIX 
The detailed statistics of experimental dataset is list in Table 4. Each 
vertical specifes 3∼5 felds to extract and can be regarded as an 
independent subset of data. Each website has hundreds of pages, 
where a page has about 300 variable nodes for the model to classify. 
Following previous work [19, 21, 40], we evaluate the extraction 
performance by webpage-level F1 scores, which is the harmonic 
mean of precision and recall in each webpage. we use website-level 
XPath voting to fnd the XPath selected as the feld value by the 
majority pages and correct the rest of the pages to extract feld 
value from this XPath as well. Finally, Structor is compared with 
the following baselines: 

Stacked Skews Model ( SSM). SSM [3] utilizes expensive handcrafted 
features and tree alignment algorithms to align the unseen web-
pages with seed webpages, which is the feature-based state-of-the-
art method that did not require visual rendering features. 

Rendering Feature Model ( Render). Render [11] employs visual 
features to explore the distance between each block in the web 
browser rendered result. The visual distance is very helpful but 
the rendering requires downloading and executing a large amount 
of external scripts, images, and style fles, which are extremely 
time/space-consuming. In specifc, Render-Full equipped with a 
sophisticated heuristic algorithm to compute visual distances gives 
the best performance compared to other variants. 

Relational Neural Model ( FreeDOM). FreeDOM [21] leverages a rela-
tional neural network to encode features such as relative distance 
and text semantics, where the frst stage (FreeDOM-NL) learns a 
dense representation for each DOM tree node, and the relational 
neural network in the second stage (FreeDOM-Full) captures the 
distance and semantic relatedness between pairs of nodes in the 
DOM trees. It is the frst systematic neural network solution for 
the problem and does not rely on visual features, but the two-stage 
model is hard to be deployed in practice. 

Simplified DOM Model ( LANTERN). LANTERN [40] simplifes the DOM 
trees to extract informative and transferable knowledge by keeping 
all the basic HTML element tags while removing the formatting 
and style tags. It models the rich structural information in the DOM 
tree such as friend circles, and learns a rich representation for each 
DOM tree node without using any visual features. However, the 

Zhenyu Zhang et al. 

Table 4: The statistics of SWDE. #Pages denotes the total 
webpage number in a vertical, #Nodes denotes the average 
variable node number in a webpage. 

Vertical #Pages #Nodes Fields 

Auto 
Book 

Camera 
Job 

Movie 
NBA Player 
Restaurant 
University 

17,923 
20,000 
5,258 
20,000 
20,000 
4,405 
20,000 
16,705 

130.1 
476.8 
351.8 
374.7 
284.6 
321.5 
267.4 
186.2 

model, price, engine, fuel_economy 
title, author, isbn, pub, date 
model, price, manufacturer 

title, company, location, date_posted 
title, director, genre, mpaa_rating 

name, team, height, weight 
name, address, phone, cuisine 
name, phone, website, type 

focus stays inside the webpage, ignoring the high-level structural 
co-occurrences over DOM tree and surface form. 

Pre-trained Language Model ( MarkupLM). MarkupLM [19] uses the 
DOM tree in markup language and the XPath query language to 
obtain the markup streams along with natural texts in markup-
language-based documents. Specifcally, an XPath embedding layer 
and three pre-training strategies are proposed for the transformer-
based model to accept markup sequence inputs. We incorporate 
MarkupLM into our Structor as base encoder, so it is treated as the 
most important comparison model in all the experiments. 
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