
Learning Structural Co-occurrences for Structured Web Data
Extraction in Low-Resource Setings

Zhenyu Zhang
Bowen Yu

Institute of Information Engineering,
Chinese Academy of Sciences

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
zhangzhenyu1996@iie.ac.cn

yubowen@iie.ac.cn

Tingwen Liu∗
Tianyun Liu

Institute of Information Engineering,
Chinese Academy of Sciences

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
liutingwen@iie.ac.cn
liutianyun@iie.ac.cn

Yubin Wang
Li Guo

Institute of Information Engineering,
Chinese Academy of Sciences

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
wangyubin@iie.ac.cn

guoli@iie.ac.cn

ABSTRACT
Extracting structured information from all manner of webpages is
an important problem with the potential to automate many real-
world applications. Recent work has shown the efectiveness of
leveraging DOM trees and pre-trained language models to describe
and encode webpages. However, they typically optimize the model
to learn the semantic co-occurrence of elements and labels in the
same webpage, thus their efectiveness depends on sufcient labeled
data, which is labor-intensive. In this paper, we further observe
structural co-occurrences in diferent webpages of the same website:
the same position in the DOM tree usually plays the same semantic
role, and the DOM nodes in this position also share similar surface
forms. Motivated by this, we propose a novel method, Structor,
to efectively incorporate the structural co-occurrences over DOM
tree and surface form into pre-trained language models. Such struc-
tural co-occurrences help the model learn the task better under
low-resource settings, and we study two challenging experimental
scenarios: website-level low-resource setting and webpage-level
low-resource setting, to evaluate our approach. Extensive exper-
iments on the public SWDE dataset show that Structor signif-
cantly outperforms the state-of-the-art models in both settings, and
even achieves three times the performance of the strong baseline
model in the case of extreme lack of training data.

CCS CONCEPTS
• Information systems → Web mining; Data extraction and
integration.

KEYWORDS
web information extraction, structural co-occurrence, regular ex-
pression, low-resource setting

∗Corresponding author.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583387

ACM Reference Format:
Zhenyu Zhang, Bowen Yu, Tingwen Liu, Tianyun Liu, Yubin Wang, and Li
Guo. 2023. Learning Structural Co-occurrences for Structured Web Data
Extraction in Low-Resource Settings. In Proceedings of the ACM Web Confer-
ence 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3543507.3583387

1 INTRODUCTION
As the web is the largest knowledge base ever built by humans, web
data extraction has gained the attention of researchers for more than
twenty years [25, 41, 42], which in turn has various downstream
applications such as knowledge-aware question answering [8, 34],
information retrieval [2, 20], and recommendation systems [9, 29].
Typically, structured web data extraction systems focus on identify-
ing attributes of interest for a topic entity from detail pages. A detail
page denotes a webpage that presents a single data record, like a
book in an online bookstore or a product in an e-commerce web-
site [11, 21]. In contrast to text-intensive documents, such as essays,
news reports, and legal contracts that are composed of grammatical
sentences, text contents on webpages are often text fragments and
not strictly grammatical. As a result, traditional natural language
processing techniques are no longer directly applicable. Consider-
ing that the vast majority of web content is organized and exposed
in HTML format, which also distinguishes the webpages from nat-
ural texts [4], it is a non-trivial task to extract structured data from
webpages that are rendered with various HTML templates.

Indeed, the main goal of HTML is to support the logical presen-
tation of web content, which brings new opportunities that are not
available in natural texts. In particular, it is important to observe
that detail pages from the same website usually share similar logical
presentations and HTML templates. Take Figure 1 as an example,
the right side shows two screenshots from Amazon.com, which are
rendered to display in browser based on two source records and
a shared DOM tree (a tree that describes the logical structure of
webpages, as shown in the left side). The goal of structured web
data extraction is to recognize attributes such as {title, author,
publisher, publication date, isbn13} from these pages. An intu-
itive solution is to frst distinguish webpages generated by diferent
templates, and then learn an extractor for each template [5, 16, 39].
However, one major limitation is that they are supervised methods
and require manual efort in preparing training examples for each
template. Moreover, the learned extractor is not suitable for the

1683

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3543507.3583387
https://doi.org/10.1145/3543507.3583387
https://Amazon.com
mailto:guoli@iie.ac.cn
mailto:wangyubin@iie.ac.cn
mailto:liutianyun@iie.ac.cn
mailto:liutingwen@iie.ac.cn
mailto:yubowen@iie.ac.cn
mailto:zhangzhenyu1996@iie.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583387&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhenyu Zhang et al.

unseen website with unseen templates, thus considerable human
eforts are required for either periodically updating templates or
annotating unseen websites. In this work, we are interested in a
scalable approach that is able to reduce expensive human eforts
and extract attributes from unseen websites.

Modern neural networks learn from massive training data and
achieve great generalization and robustness in many felds, while
the subtext of limited labeled data is unsatisfactory performance [12].
In contrast, human beings have excellent transfer learning talent in
low-resource scenarios, since humans learn the co-occurrences of
data on the basis of understanding semantics and then abstract them
into rules [37, 38]. When extracting attributes from webpages, it is
easy to fnd that HTML elements playing the same semantic role
in diferent webpages are often in the same position. For example,
"978-0590353403" and "978-0152023980" in Figure 1 are both isbn13
(International Standard Book Number), and located in the lower
right corner. Another important fnding is that elements in the same
position also share similar surface, since when presenting specifc
semantic roles, the human consensus is to follow conventional ex-
pression patterns, especially for some date- and number-related
felds. Back to the example above, we can roughly sum up that
isbn13 contains 13 digits, and there is a hyphen between the third
and fourth digits. Now imagine that if a digital sequence matching
this pattern also appears in the lower right corner of a webpage,
we can infer that it is very likely to be isbn13 of a book based on
the two cases, even if we have never seen this sequence before.
Such ability to summarize rules is the key for human beings to deal
with low-resource scenarios better than neural networks. We name
these two kinds of rules as structural co-occurrences over DOM tree
and surface form respectively, because they go beyond the previ-
ous methods, which only optimize the semantic co-occurrences
between elements and labels in a single web page, while we make
more in-depth use of the shared cross-webpage DOM tree structure
and element surface structure.

Motivated by the above observation, in this paper, we propose
Structor to learn structural co-occurrences for structured web
data extraction. We employ the pre-trained MarkupLM [19], a lan-
guage model for webpages with a BERT-like architecture [7], as the
base encoder to beneft from the pre-training process with rich and
varied webpages. DOM nodes in a webpage are concatenated into a
long sequence and sent into the encoder. To leverage the structural
co-occurrence over DOM tree, for each DOM node, we retrieve a
node in the same position from another DOM tree (i.e., another
webpage) on the same website, and then incorporate it into the
input sequence. To ensure that the inserted node does not interfere
with the semantics of the original sequence, a semantic position
embedding working in the embedding layer and a visible matrix
working in the transformer layer are introduced. For the structural
co-occurrence over surface form, we approximate the character
patterns of DOM nodes by regular expressions and integrate them
into the logits generated by neural networks. Although the context
representation output by the encoder contains rich semantic infor-
mation, we believe the surface forms containing many indicative
signals are also the focuses of human attention.

We consider two challenging experimental scenarios in this pa-
per, (i) website-level low-resource setting, where we learn a model

Figure 1: The schematic diagram of structural co-occurrence,
where elements at the same position in one website play sim-
ilar semantic roles and follow similar surface forms. The left
part plots a DOM tree and the right displays two correspond-
ing rendered webpages from Amazon.com.

with a few labeled seed websites and predict on other unseen web-
sites from the same vertical, (ii) webpage-level low-resource setting,
where we train a model with very limited labeled webpages from
one website and do the same test process above. The frst setting
focuses on the transferability among websites and reduces the hu-
man eforts in scale, while the second assesses the efectiveness of
the transferable model when lacking training data.

In summary, the main contributions of this paper include:
• To our best knowledge, it is the frst work that efciently
exploits the structural co-occurrences over DOM tree and
surface form for structured web data extraction.

• We are also the frst to study the performance when reducing
human eforts of data annotation in training stage.

• Extensive experiments on the public dataset, SWDE, show
that Structor signifcantly outperforms the state-of-the-art
methods, especially on the webpage-level setting.

Typesetting. In this paper, we use bold italic for the frst appear-
ance of a concept like DOM tree, italic surrounded by quotations
for words in the webpages like "J.K. Rolling". Courier typeface sur-
rounded by x"" for XPaths like x"/html/.../div[2]/a" and r""
for regular expressions like r"^978-\d{10}$".

2 PRELIMINARIES
In this section, we frst describe the structured web data extraction
problem formally, and then introduce two kinds of structural co-
occurrences in semi-structured webpages.

2.1 Problem Formulation
Here, we prefer to learn a transferable model for the structured web
data extraction problem. Formally, each vertical (a.k.a. domain) �
corresponds to a set of interesting atributes A� (e.g., A���� =
{title, author, publisher, publication date, isbn13}) and a

1684

https://Amazon.com

Learning Structural Co-occurrences
for Structured Web Data Extraction in Low-Resource Setings WWW ’23, April 30–May 04, 2023, Austin, TX, USA

group of websites W� , where all the websites in a vertical share
the same attribute set. Each website ��� is composed of a collection
of webpages which share a similar layout structure. Each webpage
describes a single topic entity and can be parsed to a DOM tree.
The extraction task is typically formulated as node classifcation on
the DOM tree [11]. Look at the right part of Figure 1, each element
we can view in the browser corresponds to a DOM node. Note that
a DOM tree contains a variable node set, a fxed node set, and a
non-text node set. Fixed nodes remain the same across diferent
detail pages on the same website while variable nodes may contain
diferent text contents. Following the convention in structured web
data extraction [11], we assume a node corresponds to at most one
attribute-type, and narrow down the search range to variable nodes
because the attribute values should vary in diferent pages.

2.1.1 Website-Level Low-Resource Seting. Given a small set of an-
notated seed websites {�

�
�
1, �

�
�2, ...,�

� } for a vertical � , we aim to
��

learn a transferable model M to extract attributes from a lager set
of unseen websites {��

�1, �
�
�2, ...,�

� } in the same vertical. It focuses
� �

on scalability in practical applications and is also the conventional
setting in structured web data extraction [11, 21].

2.1.2 Webpage-Level Low-Resource Seting. In this scenario, we
hope to further reduce the human cost, because the website-level
setting still requires a lot of manpower to collect, clean, and label
thousands of webpages. To reduce the labeling cost in the training
stage, we leverage very limited annotated webpages (less than 100)
from only one website to learn M and extract attributes from unseen
websites in the same vertical. It is abstracted from the real scenario
that a task needs to be annotated from scratch.

2.2 Structural Co-occurrences
Before introducing structural co-occurrences in webpages, we frst
clarify several related concepts. Unlike plain text with natural lan-
guage, HTML (Hyper-Text Markup-Language) is the standard lan-
guage for documents designed to be displayed in web browsers,
and DOM (Document Object Model) tree is the tree structure object
of markup-language-based documents (e.g., webpages) wherein
each DOM node corresponds to an HTML element. XPath (XML
Path Language) is a query language for selecting elements from
markup-language-based documents and can be used to uniquely
locate a DOM node based on the DOM tree. In a typical XPath
expression, like "/html/body/div[7]/li[5]/span[0]", the texts
stand for the tag names while the subscripts are the ordinals when
multiple nodes have the same tag name under a common parent
node. We show an example of the DOM tree along with XPaths in
Figure 1, from which we can identify the genealogy of all nodes
within the document, as well as their XPath expressions.

2.2.1 Structural Co-occurrence over DOM Tree. In Figure 1, one
obvious phenomenon is that webpages on the same website usually
share a similar logical structure. The underlying principle is that
in the process of website development, webpages are generated
by flling diferent records in the same HTML template. There-
fore, these webpages also share a similar DOM tree, and DOM
nodes with the same XPath play similar semantic roles. Specifcally,
"J.K. Rolling" and "Antoine de Saint-Exupery" share the same XPath
x"/html/.../div[2]/a", so if we already know that "J.K. Rolling"

is the author of "Harry Potter"1, we can easily infer that "Antoine
de Saint-Exupery" in the same position is the author of "The Little
Prince", even if we may not have any knowledge about him before.
In other words, when predicting the attribute-type of "Antoine de
Saint-Exupery", it is feasible to leverage the relevant information of
"J.K. Rolling". We name such nodes that share the same XPath in
diferent webpages as Peer nodes.

2.2.2 Structural Co-occurrence over Surface Form. When looking
from DOM tree to DOM node, it is not difcult to fnd that DOM
nodes with the same semantic roles also have similar surface forms,
especially for dates and numbers. For example, "October 1, 1998"
and "May 15, 2000" in Figure 1 are publication date for their topic
entities, "978-0590353403" and "978-0152023980" are isbn13. They
all follow some underlying character patterns, which are also the
convention when people express specifc types of knowledge and
could be well approximated by RegExs (Regular Expressions) [35].
Specifcally, r/^month\s\d{1,2}\,\s\d{4}$/2 describes the date-
type string and isbn13 follows the r/^\d{3}-\d{10}$/ pattern.
This kind of knowledge is shared by all websites in the vertical,
within and throughout all the webpages.

3 MODEL ARCHITECTURE
This section lays out Structor, a transformer-based model with
structural co-occurrences, and introduces the details of each module.
Firstly, we expound on our main motivation:

Motivation. Inspired by the great successes of pre-training/fne-
tuning paradigm in low-resource NLP tasks [17, 30], we employ
pre-trained MarkupLM [19] as the base encoder of webpages. To
make full use of the structural co-occurrence over DOM tree, we
frst retrieve peer nodes with the same XPath for each variable node
and splice them into input sequence. Then, we replace the default
physical position embedding in input layer as semantic position
embedding, and introduce a visible matrix to control the informa-
tion propagation in transformer layer. In this way, the spliced peer
nodes from other webpages are only associated with corresponding
variable nodes, and do not afect the semantics of other tokens in
the input sequence. Considering that human beings fully consider
the character pattern of a string when understanding its semantic
roles, we integrate the structural co-occurrence over surface form
in the prediction stage. We collect and develop a series of regular
expressions for each attribute type, and hypothesize that matching
regular expressions is a necessary condition for the fnal prediction.
In other words, only when a DOM node matches the specifc regu-
lar expressions can it be corresponding attribute type. Throughout
the whole process, there are no new parameters that need to be
optimized from scratch, so the proposed approach is theoretically
suitable for scenarios with limited training data.

3.1 Webpage Encoder with XPath
The webpage encoder is based on MarkupLM [19], a transformer-
based model with XPath embedding, and also includes three key
adaptations to integrate structural co-occurrence over DOM tree:

1We abbreviate "Harry Potter and the Sorcerer’s Stone (1)" as "Harry Potter" for brevity.
2We follow the standard RegEx grammar (https://en.wikipedia.org/wiki/Regular_
expression) and use "month" to denote twelve months (January, February, ...).

1685

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhenyu Zhang et al.

Figure 2: The architecture of webpage encoder. Variable nodes in the input sequence are extended by peer nodes. We leverage
semantic position and visible matrix to make the introduced peer nodes only act on corresponding variable nodes. The semantic
position (red number) ensures that the extension does not change the semantics of original input sequence. The visible matrix
is multiplied by the attention weight matrix to realize the blocking and interaction of information.

i.e., input sequence with peer node, embedding layer with semantic
position, and transformer layer with visible matrix. Figure 2 shows
the architecture of webpage encoder.

3.1.1 Base Encoder with XPath. To take advantage of existing pre-
trained models and adapt to markup-language-based webpage tasks,
MarkupLM [19] follows the BERT [7] architecture and introduce
XPath embedding to the original embedding layer.

For the �-th input token �� , the XPath expression is split by "/",
so as to obtain unit information at each level [(�� , 0 �

� � �
0), ...(� , �)] �� �

,
where �� is the

�

 max depth of XPath and (�� , ��)
� � denotes the tag

name and subscript of the XPath unit on level � . To convert XPath
expression into XPath embedding, �� �� �

� and � are input into the -th
tag embedding layer and subscript embedding layer, respectively,
and added up to get the �-th unit embedding ��

� ,
�� = ������� � (� �) + ������ � (�)� � � . (1)

Next, all the unit embeddings are concatenated and fed into a
feed-forward layer to get the final XPath embedding 𝑥𝑝𝑖 ,([])

𝑥𝑝𝑖 =
𝑖 𝑖𝑊𝑝 𝑢0;

𝑖𝑢1; ...;𝑢 +𝑛 𝑏
𝑢 𝑝 , (2)

where𝑊 R𝑑 ×∈ ℎ 𝑛𝑢𝑑𝑢
𝑝 and 𝑏𝑝 ∈ R𝑑ℎ denotes the weight and bias

of linear transformation, 𝑑𝑢 and 𝑑ℎ denotes the dimension of unit
embedding and XPath embedding, respectively.

For more details about XPath embedding and pre-training pro-
cess, we recommend readers refer to the original paper [19], The
next three adaptations are exactly the focus of our webpage encoder.

3.1.2 Input Sequence with Peer Node. There are usually thousands
of nodes in one webpage, and some nodes are definitely not of
interest to us. An intuitive idea is to only focus on variable nodes in
the webpage instead of sending all nodes into the model, to avoid
meaningless computational overhead, but it does not mean that

the fxed nodes are useless for the problem. Take the "Harry Potter"
webpage as example again, the preceding node "Publication Date" of
"October 1, 1998" even directly indicates its attribute type. Therefore,
when converting a webpage into an input sequence, we reserve
a certain number of preceding nodes (either fx or variable node)
before each variable node to enrich the overall semantics. It is also
a conventional preprocessing when solving structured web data
extraction in the era of deep learning [19, 21, 40].

Inspired by the process of enabling BERT representation with
knowledge graph [22], we enhance the representation of variable
nodes by integrating their peer nodes. For each variable node, we
collect a peer node set N� to store nodes from all webpages with
the same XPath. Note that for any two nodes �� and � � in N� , �� is
the peer node of � � , and vice versa. Next, we randomly select ��
peer nodes from N� (�� = 1 in default), then paste it behind the
variable node. Finally, the sequence sent into the transformer-based
model is as follows,

���� ���� [���], ...,��� ,���� ,��� , ..., [���], (3)
� �

���� ���� where ��� , ���� , ��� , denote the tokens of preceding node,
� �

variable node and peer node, respectively.

3.1.3 Embedding Layer with Semantic Position. Similar to Marku-
pLM, we generate the input features by summing up token embed-
ding, XPath embedding, and position embedding. For a transformer-
based model, if there is no position embedding, it will be equivalent
to a bag-of-word model, resulting in a lack of sequential information
(i.e., the order of tokens). However, unlike common input sequences
from the same document, the extended sequence with peer nodes
contains a lot of information from other webpages, and the physical
position is bound to cause information confusion. Therefore, how to
distinguish inserted tokens while retaining the original sequential
information is the key to position embedding.

1686

Learning Structural Co-occurrences
for Structured Web Data Extraction in Low-Resource Setings

All the sequential information of transformer-based models is
contained in the position embedding, which allows us to introduce
a semantic position to modify the physical position of tokens from
peer nodes. Figure 2 shows a vivid example of the input sequence
and semantic position, after attached tokens from peer nodes, "The
Little Prince" are inserted after "Harry Potter", but the book pub-
lished on "Oct 1 1998" should be "Harry Potter" instead of "The Little
Prince". To solve this problem, we set the position number of "Pub.
Date" to 3, 4 instead of 6, 7. So when calculating attention score
in the transformer, "Pub." is at the next position of "Potter" by the
equivalent. However, another problem arises, the index of "Pub."
and "The" are both 3, which makes them close in position when cal-
culating self-attention, but in fact, there is no connection between
them. The solution to this problem is to introduce a visible matrix
in the transformer layer, which is covered next.

3.1.4 Transformer Layer with Visible Matrix. The extended se-
quence contains knowledge from peer nodes, which helps the model
understand the semantic role of input tokens. However, the risk
raised with peer nodes is that it can lead to changes in the meaning
of original sequence. For example in Figure 2, "The Little Prince" is
only related to "Harry Potter" and has nothing to do with "Sep. 22
2001", so the representation of "Oct. 1 1998" should not be afected
by "The Little Prince". Besides, the "[CLS]" token summarizing the
whole sequence should not bypass "Harry Potter" to get the infor-
mation of "The Little Prince", as this would bring semantic changes.
To prevent the risk from happening, we introduce a visible matrix
� �∈ R � ×�� (�� is the length of input sequence) to limit the visible
area of each token so that "The Little Prince" and "Sep. 22 2001",
"[CLS]" and "The Little Prince" are not visible to each other,{

0, 𝑡𝑖 ⇔ 𝑡 𝑗 ,
𝑀𝑖 𝑗 = (4)−∞, 𝑡𝑖 ⇎ 𝑡 𝑗 ,

where �� ⇔ � � indicates that �� and � � are tokens from the original
input sequence or two peer nodes (i.e. visible to each other), while
�� ⇎ � � are not, � and � are physical position indexes.

Typical transformer-based models (e.g., BERT, MarkupLM) lever-
age a fully-connected attention map to measure pairwise inter-
action between tokens. To prevent the false semantic changes, a
straightforward operation is to modify the attention map by � ,

�� +1, � � +1,� � +1 = � � �� ��, � �� , � ��, (5) (
𝑙 1 ⊤)
+ +1 +𝑙+1 softmax

𝑄 𝐾𝑙 𝑀 𝑙+1𝐻 = √︁ 𝑉 , (6)
𝑑𝑘

where𝑊 ,𝑊 , and𝑊 𝑑ℎ×𝑑ℎ
𝑄 𝐾 𝑉 are trainable parameterswith shapeR .

𝐻 𝑙 is the hidden states of the 𝑙-th transformer layer. 𝑑𝑘 is the scaling
factor. Intuitively, if 𝑡𝑖 is invisible to 𝑡 𝑗 , 𝑀𝑖 𝑗 masks the attention
score to 0, which means 𝑡𝑖 makes no contribution to 𝑡 𝑗 .

3.2 Attribute Predictor with RegEx
The webpage encoder generates a context representations for each
input token. Instead of directly input them into the classifier, we
introduce how to predict the attribute type for each variable node
with structural co-occurrence over surface form in this section.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Figure 3: The overview of attribute predictor. The neural
networks model the semantic of input node while the regular
expressions capture surface forms. We show representative
RegExs for publication date and isbn13, in which the input
node only matches isbn13, so as to fx the prediction.

3.2.1 RegEx Collection. Regular expression is an algebraic nota-
tion used to describe specifc patterns we want to match, which
search through the sequence and return all texts meeting the pat-
tern. When taking the extraction task as an attribute classifcation
problem, regular expressions facilitate human experts to encode
world knowledge about specifc attribute types, especially for date-
and number-related attributes. Specifcally, we frst collect regular
expressions from RegEx Library3, then summarize and supplement
them manually, and fnally get at least one and at most fve expres-
sions for each attribute. The collection process follows two princi-
ples, pattern matching and keyword matching. Pattern matching
requires the sequence to strictly match the specifc pattern, mainly
for attributes with fxed form (e.g., date, phone) or without strict
regularity (e.g., name, company). By comparison, keyword match-
ing is hoped that the hit of keywords brings some positive signals
to type judgment. For example, "press" and "book" are some iconic
keywords for publisher.

3.2.2 Classification Layer with RegEx. With hidden states output
by the last layer of transformers, neural-based methods typically
utilize a classifcation layer with softmax to obtain the probability of
each attribute. For the �-th token, the predicted attribute distribution
of neural networks is,

������� = ��ℎ
� (7)� + ��,

�� = sofmax(�������), (8)
�� = arg max(��) . (9)

∈ R�ℎ ×�� where �� and � ∈ R�� are trainable parameters, �� is
the size of pre-defned attribute set. ������� is the logit generated by
neural networks. Obviously, the process only fts training data at
semantic level, neglecting the structural co-occurrence over surface
form, which sometimes falls into factual errors, such as predicting
a digit string "978-0590353403" into publication date.
3https://regexlib.com

1687

https://regexlib.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhenyu Zhang et al.

To take the surface form into consideration, for each DOM node,
we check whether it matches regular expressions one by one and
record the result as a 0-1 vector � ∈ R�� ��

� , where �� = 5 is the
maximum of regular expression for each attribute, 0 represents mis-
match and 1 represents match. Next, a 0-1 matrix � ∈ R�� �� ×��

�

is introduced to map the results �� to corresponding attributes,

������� = �� �� (10)

However, there are two obstacles to combining the logits gen-
erated by neural networks and regular expression. As shown in
Figure 3, the frst is that ������� predicted by neural networks and
the 0-1 vector ������� are not on the same scale. Thus we propose to
adaptively scale ������� in Equation 11, so that ������� could make
efective corrections to the false predictions of ������� ,

������� ← (max(�������) − min(�������)) · ������� (11)

The second obstacle is that regular expressions may not cover all
cases, since data in real scenes are quite diverse and complex. Here
we use an indicator function to measure the confdence of ������� ,
and only use ������� to update the predictions with low confdence.
Otherwise, we directly output the prediction of neural network,{

𝑟𝑙𝑜𝑔𝑖𝑡𝑖 , 𝐸 (𝑝𝑖) > 𝛿 & 𝐸 (𝑝𝑖)
= 𝑙 > 𝛿𝑔,I𝑟 (𝑟𝑙𝑜𝑔𝑖𝑡𝑖) (12)0, other,∑︁

𝑖 𝑖𝐸 (𝑝𝑖) = − 𝑝 ,𝑗 log𝑝 𝑗 (13)
𝑗

where � (��) is the entropy of original predicted distribution, and a
large entropy means low confdence, �� is the local threshold and
set as a hyper-parameter, �� is the global threshold and set as the
average entropy of all predictions in the input sequence. In other
words, if the entropy of a prediction is high enough locally and
globally, we update the prediction with RegEx knowledge. Finally,
the prediction process (Equation 8) is modifed to,

�� = sofmax(������� + I� (�������)), (14)

4 EXPERIMENTS
In this section, we frstly introduce the experimental dataset and
implementation details. Then, a collection of baseline models are
included to compare with our model under the website-level and
webpage-level low-resource settings.

4.1 Experimental Setup
4.1.1 Dataset. We carry out the publicly accessible Structured
Web Data Extraction (SWDE) dataset [11] for all evaluation tasks,
which has 8 verticals and 10 websites for each vertical4. Since
there is no ofcial train-test split for SWDE, in the website-level low-
resource experiments, we follow the conventional setting [19, 21, 40]
to randomly select � seed websites as training data and use the
remaining 10 − � websites as the test set. In the webpage-level low-
resource experiments, only a few labeled webpages from one website
can be accessed in the training stage, and the test stage is carried
out on all pages of the remaining nine websites. Diferent with the
website-level setting, we leverage � to denote the seed webpages
used in the training stage, and the value of � is [10, 20, 50, 100].

4see also Table 4 in Appendix for the statistics of SWDE.

Table 1: Comparing performance of six baseline methods to
Structor with diferent numbers of seed websites. Each entry
is the mean value on all 8 verticals and 10 permutations of
seed websites, thus 80 experiments in total.

Model \ #Seed Sites � = 1 � = 2 � = 3 � = 4 � = 5

SSM [3] 63.00 64.50 69.20 71.90 74.10
Render-Full [11] 84.30 86.00 86.80 88.40 88.60
FreeDOM-NL [21] 72.52 81.33 86.44 88.55 90.28
FreeDOM-Full [21] 82.32 86.36 90.49 91.29 92.56

LANTERN [40] 83.06 88.96 91.63 92.84 93.75

MarkupLM [19] 82.11 91.29 94.42 95.31 95.89
Structor 84.48 92.12 95.03 95.79 96.08

Obviously, the same website or webpage is never present in training
and test data in any experiment.

54.1.2 Implementation Details. We implement Structor with trans-
formers 6 [31] and the pre-trained markuplm-base model. We fol-
low the same data pre/post-processing, develop environment and
hyper-parameter setting as in MarkupLM [19] for fair composition.
Specially, we carry out the webpage-level low-resource experiments
with only one NVIDIA V100 GPU to alleviate the data coefcient
problem (when � is small, if multiple GPUs are used, the average
data allocated to each GPU is much lower than the set batch size).
Besides, the number of peer nodes for each variable node is set to 1
for efciency reasons, the local threshold in �� Attribute Predictor
is set to 0.1 (chosen from {0.01, 0.05, 0.1, 0.2}).

We evaluate predicted attribute values with the true values for
each detail page and then compute the average F1 score over all
websites/verticals. In both two settings, we take cyclic permutations
after fxing an order within the websites for each vertical, thus the
fnal result per vertical is obtained by taking the average of all 10
permutations of seed websites for each � .

4.1.3 Compared Baselines. In the website-level low-resource set-
ting, we compare Structor against recent representative base-
lines7, including Stacked Skews Model (SSM [3]), Relational Neu-
ral Model (Render [11]), Relational Neural Model (FreeDOM [21]),
Simplifed DOM Model (LANTERN [40]), and Pre-trained Language
Model (MarkupLM [19]). In the webpage-level setting, we reimple-
ment the latest open-source work MarkupLM as the strongest base-
line, which is also the base encoder of our model. Another key com-
ponent of Structor is RegEx, but a candidate feld might match
multiple regular expressions of multiple attributes, that is, the at-
tribute cannot be determined, so RegEx cannot be treated as an in-
dependent evaluable baseline method. Recently, there are also some
other works on SWDE, such as DOM-LM [6] and WebFormer [27], but
they reorganized the data to focus on the performance under full
training, and therefore is not considered in this paper.

4.2 Website-Level Low-Resource Setting
We frst compare the performance of all baselines and Structor
with diferent numbers of seed websites. Then, we conduct two sets
of analyses to verify the efectiveness of our design choices.
5https://github.com/zzysay/structor
6https://huggingface.co/microsoft/markuplm-base
7see also Appendix for detailed descriptions of baselines.

1688

https://github.com/zzysay/structor
https://huggingface.co/microsoft/markuplm-base

Learning Structural Co-occurrences
for Structured Web Data Extraction in Low-Resource Setings WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: The detailed performance of Structor of using dif-
ferent numbers of seed websites in diferent verticals. Each
entry is the mean value of 10 permutations of seed websites.

Vertical \ #Seed Sites � = 1 � = 2 � = 3 � = 4 � = 5

Auto 75.75 88.94 94.30 95.35 97.40
Book 79.99 86.80 90.23 90.66 90.21
Camera 90.24 93.71 95.67 96.92 97.03
Job 75.27 86.48 90.95 90.40 91.14

Movie 85.79 95.66 98.28 99.02 98.86
NBA Player 92.06 94.31 95.76 96.68 96.69
Restaurant 87.09 94.62 97.09 98.82 98.57
University 89.67 96.42 97.91 98.51 98.77

Average 84.48 92.12 95.03 95.79 96.08

Figure 4: Performance analysis about model modules and
peer nodes. Best view in color. Here we take NBA Player, the
vertical with the least amount of data, as an example and the
remaining seven verticals share the similar tendency.

4.2.1 Main Results. In Table 1, we show the overall comparison
between our Structor and baselines using diferent numbers of
seed websites. Our model consistently outperforms the state-of-
the-art strong baselines and obtains the largest performance lift
compared with MarkupLM when �=1 (i.e., train on only 1 website
and infer on the other 9 websites). We believe that when the amount
of training data is relatively small, the two kinds of structural co-
occurrences we introduced ensure the lower limit of performance.
In contrast, when more data join the training process, MarkupLM is
also able to learn the regular patterns from the data, which overlaps
with our structural co-occurrences to some extent.

We also report the detailed performance of Structor in Table 2.
The absolute improvement on F1 increases all the way to using 5
seed websites with gradually diminishing improvements. It is not
surprising because more training data obtain better coverage of
all possible instances, while the model becomes more robust and
less new knowledge can be transferred from annotated websites to
unseen websites when there is enough training data.

4.2.2 Ablation Study. To concretely examine the efectiveness of
our design philosophy, we demonstrate ablation studies on difer-
ent modules of Structor. As shown in Figure 4(a), both structural
co-occurrence over DOM tree and surface form (i.e., -Peer./ -RegEx)
make important contributions to the fnal performance. We con-
clude that the peer nodes provide strong auxiliary information for
attribute prediction, and the combination of regular expressions
and neural networks allows us to exploit the conciseness and efec-
tiveness of regular expressions and the strong generalization ability
of neural networks. Apart from that, we also test the importance of
associated components when applying structural co-occurrences.

Table 3: Comparing performance of MarkupLM to Structor
with diferent number of seed webpages. Each entry is the
mean value of 5 independent sub-samples and 10 permuta-
tions, thus 50 experiments in total.

Vertical \ #Seed Pages � = 10 � = 20 � = 50 � = 100

LANTERN 51.08 65.87 69.38 70.55
Auto MarkupLM 11.53 41.62 63.29 69.10

Structor 52.41 61.42 68.86 70.23

LANTERN 27.12 29.60 49.90 58.41
Book MarkupLM 8.71 22.81 56.19 70.93

Structor 50.10 60.40 69.75 71.56

LANTERN 67.61 62.88 76.00 81.20
Camera MarkupLM 30.38 65.42 79.49 82.58

Structor 67.45 77.49 84.27 87.43

LANTERN 52.84 56.95 71.99 73.03
Job MarkupLM 17.76 25.00 55.24 69.23

Structor 46.97 59.04 62.59 71.56

LANTERN 36.66 49.27 57.33 63.06
Movie MarkupLM 7.99 24.25 69.75 82.02

Structor 44.84 58.33 76.26 83.55

LANTERN 39.55 42.55 49.81 62.02
NBA Player MarkupLM 14.23 34.31 80.10 85.97

Structor 63.25 78.56 87.85 89.91

LANTERN 38.97 51.64 62.72 74.93
Restaurant MarkupLM 19.04 33.54 68.29 77.93

Structor 66.64 72.06 84.32 85.11

LANTERN 38.18 52.13 67.91 72.04
University MarkupLM 23.91 39.63 66.79 77.77

Structor 65.17 79.66 82.48 85.23

LANTERN 44.01 51.36 63.13 69.40
Average MarkupLM 16.69 35.82 67.39 76.94

Structor 57.10 68.37 77.04 80.57

The results show that the semantic position and visible matrix (i.e.,
-Vis.) are very important because they maintain the structure and
semantics of the input sequence. Similarly, the overall performance
also decreases when ablating the indicator function (i.e., -Ind.), we
hypothesize that arbitrarily fxing all the predictions degrades the
neural network and makes it fall into local optimum.

4.2.3 Peer Node Number Analysis. Although peer node brings rich
semantic information, it extends the input sequence, so that in-
creases the overall computational cost. As shown in Figure 4(b),
we conduct quantitative analysis and report the F1 scores and time
costs with {0,1,2,3,4} peer nodes, in which the relative cost is re-
ported based on the cost of not using peer nodes (i.e., 0 peer nodes).
When integrating more and more peer nodes, the computational
cost increases monotonously while the performance frst increases
and then decreases, because too many peer nodes might drown the
semantics of input sequence, resulting in a negative impact. Besides,
the performance lift brought by two peer nodes is relatively limited
compared with one, Therefore, utilizing one peer node is a choice
to balance performance and efciency.

4.3 Webpage-Level Low-Resource Setting
In this part, we test MarkupLM and Structor by varying the number
of seed webpages from {10, 20, 50, 100} to show the impact of our
approach in a more demanding low-resource scenario, assuming a
task that needs to be annotated from the scratch.

1689

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhenyu Zhang et al.

Figure 5: Per-attribute performance comparisons between
MarkupLM and Structor in the NBA Player vertical with dif-
ferent number of seed webpages. Numerical attributes like
height and weight achieve the largest performance lifts.

4.3.1 Main Results. Table 3 reports the detailed performance of
MarkupLM and Structor with diferent number of seed webpages.
The most striking fnding is that the performance of MarkupLM
almost collapsed when the amount of training data is particularly
limited (�≤10), while our Structor brings a quite amazing improve-
ment, even reaching three times the performance of the baseline
model. We explain that in this case, the training data is not enough
to adjust the model parameters, while the structural co-occurrence
over DOM tree can be regarded as a data augmentation solution,
and the structural co-occurrence over surface form helps correct a
large number of false predictions. Moreover, Compared with the
traditional methods of using about 2000 webpages (that is, �=1 in
Table 2), Structor is also capable of achieving competitive perfor-
mance with only 100 seed webpages. It provides more imagination
for the practical application of the proposed method in real world
low-resource scenarios since the method greatly reduces the de-
mand of the model for training data.

4.3.2 Per-Atribute Analysis. To access details of the indelible per-
formance improvement, we plot four histograms in Figure 5 to show
the per-attribute performance comparison between MarkupLM and
Structor in the NBA Player vertical. From the results, we conclude
that Structor perform very well on all kinds of attributes, which
means the proposed model learns gratifying semantic and structural
co-occurrences. Furthermore, numerical attributes possess the most
remarkable performance improvements, which we believe is a great
success of regular expressions, because such numerical attributes
usually have some fxed formats (e.g., height: 6’11”, weight: 220
lbs.), and the philosophy of pattern matching when collecting regu-
lar expressions enables us to accurately capture possible attribute
values.

5 RELATED WORK
Structured Web Data Extraction. Structured data extraction from
web documents has drawn a lot of attention from the data mining
research community [4, 32, 41, 42]. Traditional solutions [5, 10, 25]

usually require a signifcant number of human-crafted rules or la-
bels for inducing a wrapper, which is not scalable if we wish to
extract information from numerous websites. By contrast, Carlson
et al. [3] and Hao et al. [11] propose to learn transferable models
for the extraction of unseen websites without using new human
annotations, but these rendering-based methods require carefully
crafted heuristics around visual proximity to work well with ex-
pensive features. Recent works [19, 21, 40] focus on introducing
neural networks into web extraction and incorporating with DOM
trees. However, they lack a holistic view like humans and a large
amount of training data is necessary to achieve promising results.
In this paper, we consider an ambitious scenario. That is, to train
a general enough model with limited human eforts and handle
various webpages in one vertical without re-implementation.

Language Model with External Knowledge. Many eforts are devoted
to pre-trained language models for learning informative represen-
tations [7, 24, 26], some works also show that extra knowledge,
such as facts in WikiData and WordNet, can further beneft the
pre-trained models [18, 33, 36], but the embeddings of words in the
text and entities in the knowledge base are not in the same space
so that a cumbersome pre-training stage is required. Recently, K-
BERT [22] proposes a knowledge-enabled language model to handle
the heterogeneous embedding space problem, and K-Adapter [28]
introduces an adapter layer and clamps the pre-trained parameters
in the knowledge infusion process. One major diference is that we
systematically consider structural co-occurrences from the corpus
rather than rely on a knowledge graph. Another unique aspect of
this work is that the homogeneous knowledge is utilized plug-and-
play without any new parameters and pre-training process.

Neural Network with Regular Expression. Regular expressions com-
plement the robustness of neural networks by providing control
of a rule-based system [1, 13, 35]. Existing research studies have
exploited the signifcance of regular expression in various natu-
ral language processing tasks, especially in the absence of enough
training data [14, 15, 23]. However, they all give the collected reg-
ular expressions absolute confdence and incorporate them into
neural networks without considering their accuracy. It is also our
biggest diference from previous methods, that is, we doubt regular
expressions and propose an entropy-based method to selectively
update the prediction of neural network.

6 CONCLUSION
This paper explores a transferable manner of learning structural
co-occurrences to reduce the human eforts of structured web data
extraction. It is the frst attempt to leverage cross-webpage knowl-
edge to capture the relevance of elements from the perspective of
logical position and surface form. This kind of meta information is
able to be transferred across websites and can thus help solve the
web data extraction problem. Extensive experiments show the efec-
tiveness of the proposed method, especially when the training data
is extremely scarce. In the future, world knowledge will be taken
into account as long as a public knowledge graph of that verticals
can be easily accessed, we also plan to develop a unifed model that
is able to adaptively accept new attributes and extract structured
knowledge for all verticals without training from scratch.

1690

Learning Structural Co-occurrences
for Structured Web Data Extraction in Low-Resource Setings

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insight-
ful comments and constructive suggestions. This work is supported
by the National Key Research and Development Program of China
(grant No.2021YFB3100600), the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (grant No.XDC02040400) and
the Youth Innovation Promotion Association of Chinese Academy
of Sciences (grant No.2021153).

REFERENCES
[1] Waheed Ahmed Abro, Guilin Qi, Zafar Ali, Yansong Feng, and Muhammad Aamir.

2020. Multi-turn intent determination and slot flling with neural networks and
regular expressions. Knowledge-Based Systems (KBS) 208 (2020), 106428.

[2] Maristella Agosti, Stefano Marchesin, and Gianmaria Silvello. 2020. Learning
unsupervised knowledge-enhanced representations to reduce the semantic gap
in information retrieval. ACM Transactions on Information Systems (TOIS) 38, 4
(2020), 1–48.

[3] Andrew Carlson and Charles Schafer. 2008. Bootstrapping information extraction
from semi-structured web pages. In Proceedings of the 2008 Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD).
195–210.

[4] Valerio Cetorelli, Paolo Atzeni, Valter Crescenzi, and Franco Milicchio. 2021. The
smallest extraction problem. Proceedings of the VLDB Endowment (VLDB) 14, 11
(2021), 2445–2458.

[5] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. 2010. Automatic Wrappers
for Large Scale Web Extraction. Proceedings of the VLDB Endowment (VLDB) 4, 4
(2010), 219–230.

[6] Xiang Deng, Prashant Shiralkar, Colin Lockard, Binxuan Huang, and Huan Sun.
2022. DOM-LM: Learning Generalizable Representations for HTML Documents.
arXiv preprint arXiv:2201.10608 (2022).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT). 4171–
4186.

[8] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2014. Open question answer-
ing over curated and extracted knowledge bases. In Proceedings of the 20th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 1156–1165.

[9] Sandra Garcia Esparza, Michael P O’Mahony, and Barry Smyth. 2010. On the
real-time web as a source of recommendation knowledge. In Proceedings of the
4th ACM Conference on Recommender Systems (RecSys). 305–308.

[10] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham,
Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu, Ashwin Tengli, and
Charu Tiwari. 2011. Web-scale information extraction with vertex. In Proceedings
of the IEEE 27th International Conference on Data Engineering (ICDE). 1209–1220.

[11] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011. From one tree to a forest:
a unifed solution for structured web data extraction. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). 775–784.

[12] Michael A Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich
Klakow. 2021. A Survey on Recent Approaches for Natural Language Processing
in Low-Resource Scenarios. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT). 2545–2568.

[13] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. 2016.
Harnessing Deep Neural Networks with Logic Rules. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (ACL). 2410–2420.

[14] Chengyue Jiang, Zijian Jin, and Kewei Tu. 2021. Neuralizing Regular Expressions
for Slot Filling. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP). 9481–9498.

[15] Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and Kewei Tu. 2020.
Cold-start and interpretability: Turning regular expressions into trainable recur-
rent neural networks. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP). 3193–3207.

[16] Furkan Kocayusufoglu, Ying Sheng, Nguyen Vo, James Wendt, Qi Zhao, Sandeep
Tata, and Marc Najork. 2019. Riser: Learning better representations for richly
structured emails. In Proceedings of the 2019 World Wide Web Conference (WWW).
886–895.

[17] Dong-Ho Lee, Mahak Agarwal, Akshen Kadakia, Jay Pujara, and Xiang Ren. 2022.
Good Examples Make A Faster Learner: Simple Demonstration-based Learning
for Low-resource NER. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (ACL). 2687–2700.

[18] Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan Padnos, Or Sharir, Shai Shalev-
Shwartz, Amnon Shashua, and Yoav Shoham. 2020. SenseBERT: Driving Some

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Sense into BERT. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL). 4656–4667.

[19] Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022. MarkupLM: Pre-training
of Text and Markup Language for Visually-rich Document Understanding. In
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL). 6078–6087.

[20] Xiangsheng Li, Jiaxin Mao, Weizhi Ma, Yiqun Liu, Min Zhang, Shaoping Ma,
Zhaowei Wang, and Xiuqiang He. 2021. Topic-enhanced knowledge-aware
retrieval model for diverse relevance estimation. In Proceedings of the Web Con-
ference 2021 (WWW). 756–767.

[21] Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep Tata. 2020. FreeDOM: A
Transferable Neural Architecture for Structured Information Extraction on Web
Documents. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD). 1092–1102.

[22] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and
Ping Wang. 2020. K-BERT: Enabling Language Representation with Knowledge
Graph. In Proceedings of the 34th AAAI Conference on Artifcial Intelligence (AAAI).
2901–2908.

[23] Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan, and
Dongyan Zhao. 2018. Marrying Up Regular Expressions with Neural Networks:
A Case Study for Spoken Language Understanding. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL). 2083–2093.

[24] Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo, Zhenyu Zhang, Zhengjie Huang,
Teng Hu, Weichong Yin, Yongfeng Chen, Yin Zhang, Shikun Feng, Yu Sun, Hua
Wu, and Haifeng Wang. 2022. ERNIE-Layout: Layout Knowledge Enhanced Pre-
training for Visually-rich Document Understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2022 (EMNLP: Findings). 3744–3756.

[25] Sandeep Tata, Navneet Potti, James B Wendt, Lauro Beltrão Costa, Marc Najork,
and Beliz Gunel. 2021. Glean: structured extractions from templatic documents.
Proceedings of the VLDB Endowment (VLDB) 14, 6 (2021), 997–1005.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of 31st Conference on Neural Information Processing
Systems (NeurIPS). 1–12.

[27] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang
Liu. 2022. WebFormer: The Web-page Transformer for Structure Information
Extraction. In Proceedings of the ACM Web Conference 2022 (WWW). 3124–3133.

[28] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuan-Jing Huang, Jianshu Ji,
Guihong Cao, Daxin Jiang, and Ming Zhou. 2021. K-Adapter: Infusing Knowl-
edge into Pre-Trained Models with Adapters. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021 (ACL: Findings). 1405–1418.

[29] Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-Seng
Chua. 2020. Reinforced negative sampling over knowledge graph for recommen-
dation. In Proceedings of the Web Conference 2020 (WWW). 99–109.

[30] Yaqing Wang, Haoda Chu, Chao Zhang, and Jing Gao. 2021. Learning from
Language Description: Low-shot Named Entity Recognition via Decomposed
Framework. In Findings of the Association for Computational Linguistics: EMNLP
2021 (EMNLP: Findings). 1618–1630.

[31] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue,
Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations (EMNLP: Demo). 38–45.

[32] Tak-Lam Wong, Wai Lam, and Tik-Shun Wong. 2008. An unsupervised frame-
work for extracting and normalizing product attributes from multiple web sites.
In Proceedings of the 31st International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR). 35–42.

[33] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2020.
Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language
Model. In Proceedings of the 8th International Conference on Learning Representa-
tions (ICLR). 1–13.

[34] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.
2019. Improving Question Answering over Incomplete KBs with Knowledge-
Aware Reader. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL). 4258–4264.

[35] Shanshan Zhang, Lihong He, Slobodan Vucetic, and Eduard Dragut. 2018. Regular
expression guided entity mention mining from noisy web data. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP).
1991–2000.

[36] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
2019. ERNIE: Enhanced Language Representation with Informative Entities.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL). 1441–1451.

[37] Zhenyu Zhang, Xiaobo Shu, Bowen Yu, Tingwen Liu, Jiapeng Zhao, Quangang
Li, and Li Guo. 2020. Distilling Knowledge from Well-informed Soft Labels
for Neural Relation Extraction. In Proceedings of the 34th AAAI Conference on
Artifcial Intelligence (AAAI). 9620–9627.

1691

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[38] Zhenyu Zhang, Bowen Yu, Xiaobo Shu, Xue Mengge, Tingwen Liu, and Li Guo.
2021. From What to Why: Improving Relation Extraction with Rationale Graph.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
(ACL: Findings). 86–95.

[39] Shuyi Zheng, Ruihua Song, Ji-Rong Wen, and C Lee Giles. 2009. Efcient record-
level wrapper induction. In Proceedings of the 18th ACM Conference on Information
and knowledge Management (CIKM). 47–56.

[40] Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, and Sandeep Tata. 2022.
Learning Transferable Node Representations for Attribute Extraction from Web
Documents. In Proceedings of the 15th ACM International Conference on Web
Search and Data Mining (WSDM). 1479–1487.

[41] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2006. Simultane-
ous record detection and attribute labeling in web data extraction. In Proceedings
of the 12th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD). 494–503.

[42] Jun Zhu, Bo Zhang, Zaiqing Nie, Ji-Rong Wen, and Hsiao-Wuen Hon. 2007.
Webpage understanding: an integrated approach. In Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 903–912.

APPENDIX
The detailed statistics of experimental dataset is list in Table 4. Each
vertical specifes 3∼5 felds to extract and can be regarded as an
independent subset of data. Each website has hundreds of pages,
where a page has about 300 variable nodes for the model to classify.
Following previous work [19, 21, 40], we evaluate the extraction
performance by webpage-level F1 scores, which is the harmonic
mean of precision and recall in each webpage. we use website-level
XPath voting to fnd the XPath selected as the feld value by the
majority pages and correct the rest of the pages to extract feld
value from this XPath as well. Finally, Structor is compared with
the following baselines:

Stacked Skews Model (SSM). SSM [3] utilizes expensive handcrafted
features and tree alignment algorithms to align the unseen web-
pages with seed webpages, which is the feature-based state-of-the-
art method that did not require visual rendering features.

Rendering Feature Model (Render). Render [11] employs visual
features to explore the distance between each block in the web
browser rendered result. The visual distance is very helpful but
the rendering requires downloading and executing a large amount
of external scripts, images, and style fles, which are extremely
time/space-consuming. In specifc, Render-Full equipped with a
sophisticated heuristic algorithm to compute visual distances gives
the best performance compared to other variants.

Relational Neural Model (FreeDOM). FreeDOM [21] leverages a rela-
tional neural network to encode features such as relative distance
and text semantics, where the frst stage (FreeDOM-NL) learns a
dense representation for each DOM tree node, and the relational
neural network in the second stage (FreeDOM-Full) captures the
distance and semantic relatedness between pairs of nodes in the
DOM trees. It is the frst systematic neural network solution for
the problem and does not rely on visual features, but the two-stage
model is hard to be deployed in practice.

Simplified DOM Model (LANTERN). LANTERN [40] simplifes the DOM
trees to extract informative and transferable knowledge by keeping
all the basic HTML element tags while removing the formatting
and style tags. It models the rich structural information in the DOM
tree such as friend circles, and learns a rich representation for each
DOM tree node without using any visual features. However, the

Zhenyu Zhang et al.

Table 4: The statistics of SWDE. #Pages denotes the total
webpage number in a vertical, #Nodes denotes the average
variable node number in a webpage.

Vertical #Pages #Nodes Fields

Auto
Book

Camera
Job

Movie
NBA Player
Restaurant
University

17,923
20,000
5,258
20,000
20,000
4,405
20,000
16,705

130.1
476.8
351.8
374.7
284.6
321.5
267.4
186.2

model, price, engine, fuel_economy
title, author, isbn, pub, date
model, price, manufacturer

title, company, location, date_posted
title, director, genre, mpaa_rating

name, team, height, weight
name, address, phone, cuisine
name, phone, website, type

focus stays inside the webpage, ignoring the high-level structural
co-occurrences over DOM tree and surface form.

Pre-trained Language Model (MarkupLM). MarkupLM [19] uses the
DOM tree in markup language and the XPath query language to
obtain the markup streams along with natural texts in markup-
language-based documents. Specifcally, an XPath embedding layer
and three pre-training strategies are proposed for the transformer-
based model to accept markup sequence inputs. We incorporate
MarkupLM into our Structor as base encoder, so it is treated as the
most important comparison model in all the experiments.

1692

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Structural Co-occurrences

	3 Model Architecture
	3.1 Webpage Encoder with XPath
	3.2 Attribute Predictor with RegEx

	4 Experiments
	4.1 Experimental Setup
	4.2 Website-Level Low-Resource Setting
	4.3 Webpage-Level Low-Resource Setting

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

